strip footing
Recently Published Documents


TOTAL DOCUMENTS

373
(FIVE YEARS 124)

H-INDEX

26
(FIVE YEARS 4)

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jędrzej Dobrzański ◽  
Marek Kawa

Abstract The study considers the bearing capacity of eccentrically loaded strip footing on spatially variable, purely cohesive soil. The problem is solved using the random finite element method. The anisotropic random field of cohesion is generated using the Fourier series method, and individual problems within performed Monte Carlo simulations (MCSs) are solved using the Abaqus finite element code. The analysis includes eight different variants of the fluctuation scales and six values of load eccentricity. For each of these 48 cases, 1000 MCSs are performed and the probabilistic characteristics of the obtained values are calculated. The results of the analysis indicate that the mean value of the bearing capacity decreases linearly with eccentricity, which is consistent with Meyerhof's theory. However, the decrease in standard deviation and increase in the coefficient of variation of the bearing capacity observed are non-linear, which is particularly evident for small eccentricities. For one chosen variant of fluctuation scales, a reliability analysis investigating the influence of eccentricity on reliability index is performed. The results of the analysis conducted show that the value of the reliability index can be significantly influenced even by small eccentricities. This indicates the need to consider at least random eccentricities in future studies regarding probabilistic modelling of foundation bearing capacity.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Duaa Al-Jeznawi ◽  
Adel A. Al-Azzawi

Abstract The soil in Iraq has a low load carrying or bearing capacity and high deflections or settlement because of the applied loads. The use of strip footing as a foundation to support different kinds of heavy structures has become necessary nowadays through solving such problems by using geogrid. This soil improvement technique is widely used all over the world. In this paper, the bearing capacity and settlements were calculated using finite elements and analytical models for strip footing resting on different kinds of soil. The study parameters are footing rigidity, the number of layers in a geogrid, the dimension of geogrid, and spacing of geogrid layers. According to the findings, the geogrid improved the bearing ability of the footing and reduced settlement. The optimum geogrid dimension was three times the footing width, and three geogrid layers were optimum. The changing in footing rigidity also affects the stress and settlement behavior.


Sign in / Sign up

Export Citation Format

Share Document