vertical displacements
Recently Published Documents


TOTAL DOCUMENTS

499
(FIVE YEARS 163)

H-INDEX

24
(FIVE YEARS 4)

2022 ◽  
Vol 906 ◽  
pp. 39-45
Author(s):  
Tatiana Maltseva

One of the ways to increase the bearing capacity and stability of a water-saturated base by introducing a sand pile vertically reinforced along the contour with geosynthetic material (geogrid SSP 30 / 30-2.5) is experimentally substantiated. This constructive solution is used in low-rise construction. For the theoretical substantiation of the suggested method, it is proposed to model the interaction of a weak foundation and a reinforced sand pile on the basis of the linear theory of viscoelasticity. Calculation of vertical displacements of the pile and comparison with the results of in situ experiments is presented.


GEODYNAMICS ◽  
2021 ◽  
Vol 2(31)2021 (2(31)) ◽  
pp. 16-28
Author(s):  
Kornyliy Tretyak ◽  
◽  
Іvan Brusak ◽  
Іhor Bubniak ◽  
Fedir Zablotskyi ◽  
...  

The paper analyzes the vertical displacements of the GNSS sites of civil engineering structures caused by non-tidal atmospheric loading (NTAL). The object of the study is the Dnister Hydroelectric Power Plant №1 (HPP-1) and its GNSS monitoring network. The initial data are the RINEX-files of 14 GNSS stations of the Dnister HPP-1 and 8 permanent GNSS stations within a radius of 100 km, the NTAL model downloaded from the repository of German Research Centre for Geosciences GFZ for 2019-2021, and materials on the geological structure of the object. Methods include comparison and analysis of the altitude component of GNSS time series with model values of NTAL as well as interpretation of the geodynamic vertical displacements, taking into account the analysis of the geological structure. As a result, it was found that the sites of the GNSS network of the Dnister HPP-1 undergo less vertical displacements than the permanent GNSS stations within a radius of 100 km. This corresponds to the difference in thickness and density of the rocks under the GNSS sites and stations, so they undergo different elastic deformations by the same NTAL. In addition, the research detected different dynamics of vertical displacements of GNSS sites on the dam and on the river banks. It leads to cracks and deformations of concrete structures in the dam-bank contact zones. During the anomalous impact of NTAL, the altitude of even nearby sites can change if the geological structure beneath them is different. The work shows that for civil engineering structures it is necessary to apply special models to take into account NTAL deformations for high-precision engineering and geodetic measurements.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 76
Author(s):  
Roberto Sañudo ◽  
Ignacio Jardí ◽  
José-Conrado Martínez ◽  
Francisco-Javier Sánchez ◽  
Marina Miranda ◽  
...  

This manuscript presents the first measurement program and data collection on the Dinatrans track transition solution after it was installed in a track section in the north of Spain (Galicia). The Dinatrans solution was created to address the limitations of several track transition solutions. This novel solution consists of two inner and outer rails from slab track to ballast track, pads with different stiffness over sleepers of variable lengths installed from ballast track to slab track, and a simple substructure formed by non-structural concrete poured over the natural ground. The main objective of this research was to assess the suitability and the initial performance of the Dinatrans track transition solution. The measured variables for these initial real-world tests were vertical accelerations on sleepers, shear stress on rails, vertical displacements on rails and vertical displacements on sleepers. All measurements of these variables were obtained in an in-situ program by installing vertical accelerometers and LVDTs on the track structure and extensometer gauges on the rails and sleepers. The methodology and the procedures followed are described. The Dinatrans initial solution was compared with the Standard solution used in Spain using these initial measurements. This field analysis provides an initial understanding of the performance of the new track transition. Further measurements will be required to check the track transition performance over the long term; however, no maintenance works have been necessary since construction (2016).


2021 ◽  
Author(s):  
Takashi Hitosugi ◽  
Norimasa Awata ◽  
Yoichiro Miki ◽  
Masanori Tsukamoto ◽  
Takeshi Yokoyama

Abstract During cardiopulmonary resuscitation (CPR), almost commercially dental chairs lack sufficient stability to perform effective manual chest compression (MCC). In our previous study, our technique that stabilizing stool can significantly reduce vertical displacement in a dental chair’s backrest. This study demonstrates that the efficacy of different methods for stabilizing 3 types of dental chair with a flat or a severely curved backrest exterior for effective MCC. Vertical displacement of the dental chair’s backrest was recorded. The data was captured with three different stool positions (no stool, under MCC, under shoulders). Reduction ratios were calculated to evaluate the effectiveness of the stool positions. In all types of dental chair, the technique significantly reduced the vertical displacements of the backrest. The reduction ratio varied nearly 40% under the area for MCC and 65% under the shoulder with a severely curved backrest exterior. With a flat shape of dental chair, these ratios were around 90% versus without a stool. The technique is a firm support and reduce the displacement of any type of dental chair’s backrest for effective MCC.


Author(s):  
C. Dias ◽  
P. Americo ◽  
J. Landre ◽  
M. Campolina ◽  
V. Vieira ◽  
...  

The efficiency of public transport is fundamental for the city traffic. Taking this as a goal and linking with the financial and structural situations of each market, new technologies regarding city buses have emerged in recent years and one of them is studied in a comparative way in the present work. A new city bus which has 15 meters length, front-engine and three-axles. The great difference of this vehicle is the positioning of the third axle near to the front axle of the vehicle instead of the traditional configuration whereupon this axle is located near the rear axle. With the aid of MATLAB/Simulink, the two mentioned vehicle models were generated with eighteen degrees of freedom and were tested in two different manoeuvrers, passing through a bump and then a sequence of turns. At the end of the work, it was possible to conclude that the new city bus presents less oscillations in terms of roll and pitch angles in addition to smaller vertical displacements for the same proposed manoeuvre, which leads to greater passenger comfort.


2021 ◽  
Vol 11 (23) ◽  
pp. 11226
Author(s):  
Myoung-Soo Won ◽  
Christine Patinga Langcuyan

The geosynthetic reinforced soil (GRS) bridge abutment with a staged-construction full height rigid (FHR) facing and an integral bridge (IB) system was developed in Japan in the 2000s. This technology offers several advantages, especially concerning the deformation behavior of the GRS-IB abutment. In this study, the effects of GRS in the bridge abutment with FHR facing and the effects of geosynthetics reinforcement length on the deformation behavior of the GRS–IB are presented. The numerical models are analyzed using the finite element method (FEM) in Plaxis 2D program. The results showed that the GRS–IB model exhibited the least lateral displacements at the wall facing compared to those of the IB model without geosynthetics reinforcement. The geosynthetics reinforcement in the bridge abutment with FHR facing has reduced the vertical displacement increments by 4.7 times and 1.3 times (maximum) after the applied general traffic loads and railway loads, respectively. In addition, the numerical results showed that the increase in the length-to-height (L/H) ratio of reinforcement from 0.3H to 1.1H decreases the maximum lateral displacements by 29% and the maximum vertical displacements by 3% at the wall facing by the end of construction. The effect of the reinforcement length on the wall vertical displacements is minimal compared to the effect on the wall lateral displacements.


Fire ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 87
Author(s):  
Georgios Deligiannakis ◽  
Aggelos Pallikarakis ◽  
Ioannis Papanikolaou ◽  
Simoni Alexiou ◽  
Klaus Reicherter

Soil changes, including landslides and erosion, are some of the most prominent post-fire effects in Mediterranean ecosystems. Landslide detection and monitoring play an essential role in mitigation measures. We tested two different methodologies in five burned sites with different characteristics in Central Greece. We compared Unmanned Aerial Vehicles (UAV) using derived high-resolution Digital Surface Models and point clouds with terrestrial Light Detection and Ranging (LiDAR)-derived point clouds to reveal new cracks and monitor scarps of pre-existing landslides. New cracks and scarps were revealed at two sites after the wildfire, measuring up to 27 m in length and up to 25 ± 5 cm in depth. Pre-existing scarps in both Kechries sites appeared to be active, with additional vertical displacements ranging from 5–15 ± 5 cm. In addition, the pre-existing landslide in Magoula expanded by 8%. Due to vegetation regrowth, no changes could be detected in the Agios Stefanos pre-existing landslide. This high-spatial-resolution mapping of slope deformations can be used as landslide precursor, assisting prevention measures. Considering the lack of vegetation after wildfires, UAV photogrammetry has great potential for tracing such early landslide indicators and is more efficient for accurately recording soil changes.


Geosciences ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 451
Author(s):  
Nasim Mozafari ◽  
Çağlar Özkaymak ◽  
Dmitry Tikhomirov ◽  
Susan Ivy-Ochs ◽  
Vasily Alfimov ◽  
...  

This study reports on the cosmogenic 36Cl dating of two normal fault scarps in western Turkey, that of the Manastır and Mugırtepe faults, beyond existing historical records. These faults are elements of the western Manisa Fault Zone (MFZ) in the seismically active Gediz Graben. Our modeling revealed that the Manastır fault underwent at least two surface ruptures at 3.5 ± 0.9 ka and 2.0 ± 0.5 ka, with vertical displacements of 3.3 ± 0.5 m and 3.6 ± 0.5 m, respectively. An event at 6.5 ± 1.6 ka with a vertical displacement of 2.7 ± 0.4 m was reconstructed on the Mugırtepe fault. We attribute these earthquakes to the recurring MFZ ruptures, when also the investigated faults slipped. We calculated average slip rates of 1.9 and 0.3 mm yr−1 for the Manastır and Mugırtepe faults, respectively.


Author(s):  
Gabriel Norevik ◽  
Susanne Åkesson ◽  
Arne Andersson ◽  
Johan Bäckman ◽  
Anders Hedenström

Avian migrants may fly at a range of altitudes, but usually concentrate near strata where a combination of flight conditions is favourable. The aerial environment can have a large impact on the performance of the migrant and is usually highly dynamic, making it beneficial for a bird to regularly check the flight conditions at alternative altitudes. We recorded the migrations between northern Europe and sub-Saharan Africa of European nightjars Caprimulgus europaeus to explore their altitudinal space use during spring and autumn flights and to test whether their climbs and descents were performed according to predictions from flight mechanical theory. Spring migration across all regions was associated with more exploratory vertical flights involving major climbs, a higher degree of vertical displacement within flights, and less time spent in level flight, although flight altitude per se was only higher during the Sahara crossing. The nightjars commonly operated at ascent rates below the theoretical maximum, and periods of descent were commonly undertaken by active flight, and rarely by gliding flight, which has been assumed to be a cheaper locomotion mode during descents. The surprisingly frequent flight-altitude shifts further suggest that nightjars can perform vertical displacements at a relatively low cost, which is expected if the birds can allocate potential energy gained during climbs to thrust forward movement during descents. The results should inspire future studies on the potential costs associated with frequent altitude changes and their trade-offs against anticipated flight condition improvements for aerial migrants.


Sign in / Sign up

Export Citation Format

Share Document