Evaluation of Mechanical Properties of Eggshell Powder and Palm Kernel Shell Powder as Partial Replacement of Cement

Author(s):  
Gunalaan Vasudevan ◽  
Navisha Marimuthu
2012 ◽  
Vol 2 (6) ◽  
pp. 315-319 ◽  
Author(s):  
F. A. Olutoge ◽  
H. A. Quadri ◽  
O. S. Olafusi

Many researchers have studied the use of agro-waste ashes as constituents in concrete. These agro-waste ashes are siliceous or aluminosiliceous materials that, in finely divided form and in the presence of moisture, chemically react with the calcium hydroxide released by the hydration of Portland cement to form calcium silicate hydrate and other cementitious compounds. Palm kernel shell ash (PKSA) is a by-product in palm oil mills. This ash has pozzolanic properties that enables it as a partial replacement for cement but also plays an important role in the strength and durability of concrete. The use of palm kernel shell ash (PKSA) as a partial replacement for cement in concrete is investigated. The objective of this paper is to alleviate the increasing challenges of scarcity and high cost of construction materials used by the construction industry in Nigeria and Africa in general, by reducing the volume of cement usage in concrete works. Collected PKSA was dried and sieved through a 45um sieve. The fineness of the PKSA was checked by sieving through 45um sieve. The chemical properties of the ash are examined whereas physical and mechanical properties of varying percentage of PKSA cement concrete and 100% cement concrete of mix 1:2:4 and 0.5 water-cement ratios are examined and compared. A total of 72 concrete cubes of size 150 × 150 × 150 mm³ with different volume percentages of PKSA to Portland cement in the order 0:100, 10:90 and 30:70 and mix ratio of 1:2:4 were cast and their physical and mechanical properties were tested at 7, 14, 21 and 28 days time. Although the compressive strength of PKSA concrete did not exceed that of OPC, compressive strength tests showed that 10% of the PKSA in replacement for cement was 22.8 N/mm2 at 28 days; which was quite satisfactory with no compromise in compressive strength requirements for concrete mix ratios 1:2:4. This research showed that the use of PKSA as a partial replacement for cement in concrete, at lower volume of replacement, will enhance the reduction of cement usage in concretes, thereby reducing the production cost. This research was carried out at the University of Ibadan, Ibadan, Nigeria.


2013 ◽  
Vol 856 ◽  
pp. 338-342 ◽  
Author(s):  
Chin Yee Sing ◽  
Mohd Shiraz Aris

Burning fossil fuel like coal in power plants released carbon dioxide that had been absorbed millions of years ago. Unfortunately, excessive carbon dioxide emission had led to global warming. Malaysia, as one of the major exporters of palm oil, has abundant oil palm mill residues that could be converted into value-added product like biomass fuel briquettes. Fuel briquette with palm kernel shell and palm mesocarp fibre as its main ingredients showed satisfactory fuel characteristics and mechanical properties as a pure biomass fuel briquette. The effects of adding some coal of higher calorific value to the satisfactory biomass fuel briquette were focused in this study. Various coal-biomass fuel blends were used, ranging from 0wt% coal to 50wt% coal. The fuel properties and mechanical properties of pure biomass briquette and briquettes with different amount of coal added were compared experimentally. From the fuel properties tests, it was found that as the coal content in the briquette was increased, the carbon content and calorific value increased. Mechanical property tests on the fuel briquettes showed a mixture of results, with some favored higher portion of coal in the briquette for better handling, transport and storage properties while some favored greater amount of biomass.


2021 ◽  
Vol 1047 ◽  
pp. 179-185
Author(s):  
Siti Zubaidah Mohd Asri ◽  
Faridah Hanim Khairuddin ◽  
Choy Peng Ng ◽  
Noor Aina Misnon ◽  
Nur Izzi Md Yusoff ◽  
...  

Pavement failures such as fatigue, rutting, cracking, bleeding, and stripping are typical pavement deterioration. Researchers have been experimenting with pavement modification to overcome these problems. This study determines the optimum binder content (OBC) for modifying an asphalt mixture with a partial replacement of coarse aggregate (5mm-14mm sieve size) with palm kernel shell (PKS). A 60/70 penetration grade bitumen was mixed with 10, 20 and 30% PKS at selected aggregate gradation following the Public Work Department of Malaysia (JKR/SPJ/2008-S4) specification. The preparation of 60 samples of unmodified and modified asphalt mixture employed the Marshall Method compacted with 75 blows. The OBC was determined based on five volumetric properties of asphalt mixture namely stability, flow, bulk density, void filled with asphalt, and void in total mix. The OBC and volumetric properties of the modified PKS asphalt mixture samples were compared with unmodified asphalt mixture samples in accordance to the specification. Results showed that the OBC sample with 30% aggregate replacement produced the highest OBC value of 5.53% relative to the control sample with 5.40% OBC. The trend for OBC with PKS replacement begins with 10% PKS with 5.30% OBC, 20% PKS with 5.32% OBC and 30% PKS. All volumetric properties of the PKS samples are within the specification limit. Thus, PKS has a promising potential as a coarse aggregate replacement in asphalt mixture.


2018 ◽  
Vol 2 (2) ◽  
Author(s):  
Alias Nur Fazreen ◽  
Ismail Hanafi ◽  
Wahab Mohamad Kahar Ab ◽  
Ragunathan Santiagoo ◽  
Ardhyananta Hosta ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document