binder content
Recently Published Documents


TOTAL DOCUMENTS

273
(FIVE YEARS 100)

H-INDEX

20
(FIVE YEARS 6)

Author(s):  
Kiwon Oh ◽  
Haozhe Yi ◽  
Rui Kou ◽  
Yu Qiao
Keyword(s):  

2022 ◽  
Vol 8 ◽  
Author(s):  
Chen Hou ◽  
Liujun Yang ◽  
Lei Li ◽  
Baoxu Yan

The clarification of the variation on the strength of the cemented paste backfill (CPB) under the coupling of multi-factor is the foundation of the CPB design of the mine. In this article, the physical and mechanical properties of the CPB under the coupling effect of curing time, solid content, and binder content were experimentally and theoretically investigated. The results show that 1) the increase in binder content can effectively increase the later strength of CPB. 2) A sensitivity parameter considering the span of multi-factor was constructed, indicating that the curing time has the greatest impact on the uniaxial compressive strength (UCS), and the variation in solid content has the least impact on it, which can be verified by the stress–strain curves. 3) Curing time and binder content can effectively change the stress evolution, which is reflected in reducing the strain corresponding to the peak stress, enhancing the characteristics of the peak stress and increasing stress drop. The results of this study aim to explain the essence of the influence of each factor on the mechanical behavior of CPB in the view of stress–strain evolution, which will help to better understand the mechanical characteristics of CPB and quantify the sensitivity of the mechanical properties to various factors.


Author(s):  
Aurélie Laborel-Préneron ◽  
Clara Ampe ◽  
Laurent Labonne ◽  
Camille Magniont ◽  
Philippe Evon

Co-product of sunflower cultivation, pith of stem has a little exploited insulating potential. Blocks in which pith particles are glued together using a starch-based binder have already been obtained. However, they are highly water-sensitive. Replacing this binder with others has been considered here. Polysaccharide-based binders were tested, chosen for their more hydrophobic character: sodium alginate, chitosan, Citrus pectin, and a modified starch. Like starch, these binders are physically binding. They are first solubilised in water (except chitosan, dissolved in 2% acetic acid). The solution is then mixed with pith particles before cold compression molding for 90 s. A 10% binder content was initially considered. The blocks were all cohesive with a dry density from 36 to 42 kg/m3). Their performances were assessed through water absorption capacity and resistance via capillary absorption tests on wet sponges, mechanical test and thermal conductivity. Chitosan and pectin-based blocks show the best properties, particularly concerning water resistance and mechanical properties. The pectin-based block has improved its elastic modulus by 40% compared to a starch-based block. The pectin-based block in its case absorbs 2.7 times less water than starch. Finally, thermal conductivities of pectin and chitosan-based pith blocks are in the same order of magnitude as for starch (39.8-40.1 mW/m.K), and close to values from commercial materials (e.g., polystyrene). Pectin and chitosan were also tested at three rates (5%, 10% and 15%). A significant improvement in the blocks' compressive strength was observed with the increase in binder rate, while thermal conductivities varied little.


2021 ◽  
Vol 12 (1) ◽  
pp. 296
Author(s):  
Bahruddin Ibrahim ◽  
Zuchra Helwani ◽  
Ivan Fadhillah ◽  
Arya Wiranata ◽  
Joni Miharyono

The direct use of natural rubber latex (NRL) as a binder for emulsion paints did not produce emulsion paints with good opacity, washability resistance, and regulated touch drying time, even when mixed with polyvinyl acetate (PVAc). This study aimed to study the properties of opacity (hiding power), washability resistance, and set drying touch time of emulsion paint with a binder added from a mixture of modified natural rubber latex (NRL) and PVAc. NRL modifications included UV photodepolymerization with TiO2 catalyst and grafting copolymerization of methyl methacrylate and styrene (NRL-g-(MMA-co-St)). NRL was mixed with PVAC at ratios of 0/100; 15/85; 25/75; 35/65; 50/50; 100/0% w/w before being used as a binder for emulsion paint. Emulsion paint samples had different binder contents, namely 2, 4, 6, and 8% w/w. Tests on paint samples included opacity using a UV-Vis spectrophotometer (EASYSPEC safas Monaco), washability using the Digital BGD 526 Wet Abrasion Scrub Tester, and drying time set using the ASTM STP500 procedure. The results showed that the opacity (hiding power), washability resistance, and set drying touch time met the emulsion paint standards for all binder levels, except the 100% w/w modified NRL composition. The higher level of NRL in the binder causes these properties to decrease and become unstable. The best opacity (hidden power), washing resistance, and drying touch time were obtained on modified NRL with a concentration of 15% w/w. The binder content in the paint was around 4% w/w, with an opacity of about 1.78% abs, washing resistance of 12 times, and the set drying touch time to 80 min.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7718
Author(s):  
Aneta Gumowska ◽  
Eduardo Robles ◽  
Grzegorz Kowaluk

In this research, the assessment of the impact of natural biopolymer binders on selected mechanical and physical properties of lignocellulosic composites manufactured with different resination (12%, 15%, 20%). Different mechanical and physical properties were determined: modulus of rupture, modulus of elasticity, internal bonding strength, thickness swelling, water absorption, contact angle, and density profile. Moreover, thermal properties such as thermogravimetric analysis and differential scanning calorimetry were studied for the polymers. The results showed significant improvement of characterized features of the composites produced using biopolymers. However, the rise of the properties was visible when the binder content raised from 12% to 15%. Further increase of biopolymer binder did not imply a considerable change. The most promising biopolymer within the tested ones seems to be polycaprolactone (PCL).


2021 ◽  
Vol 515 ◽  
pp. 230644
Author(s):  
Enmeng Zhen ◽  
Jiangmin Jiang ◽  
Chen Lv ◽  
Xiaowei Huang ◽  
Hai Xu ◽  
...  

Author(s):  
Kourosh Shirani ◽  
Mohammad Reisi ◽  
Mohammad Safari Savadkoohi

AbstractBesides preventing valuable natural resources from going to waste, using stone waste from stone processing plants in concrete helps reduce environmental pollution and, therefore, offers a convenient route to sustainable development. The present study aims to use granite waste (GW) in high-strength refractory concrete. Sixteen high-strength refractory concrete mixes, including two water-to-binder ratios (W/B = 0.17 and 0.2), two silica-fume-to-binder ratios (SF/B = 0.15 and 0.2), two binder contents (B = 1200 and 1400 kg/m3), and two replacement ratios of silica sand by granite waste (GW/Agg = 0 and 50%) were designed and prepared with high-alumina cement (HAC). The concrete specimens were exposed to 1200 °C. Compressive and flexural strength and scanning electron microscopy (SEM) tests were performed on specimens of concrete mixes before and after heating. It was found that in specimens with high binder content (1400 kg/m3), replacing 50% silica sand with GW (GW/Agg = 50%) in refractory concrete improves compressive and flexural strengths by 3–15 and 4–24% before heating, respectively. It was also shown that using GW to replace silica aggregates in concrete specimens with a 1200 kg/m3 binder content not only did not undermine, but also improved the compressive and flexural strengths of refractory concrete after heating by 20–78% and 15–60%, respectively, as a result of sintering. Meanwhile, in the case of the concrete with 1400 kg/m3 binder content, adding GW exacerbated its loss of compressive and flexural strengths after heating due to little or lack of sintering.


TRANSPORTES ◽  
2021 ◽  
Vol 29 (4) ◽  
pp. 2456
Author(s):  
Cássio Alberto Teoro Do Carmo ◽  
Géssica Soares Pereira ◽  
Geraldo Luciano de Oliveira Marques ◽  
Paulo Roberto Borges

The goal of this study was to analyze the structural sensitivity of a flexible pavement, whose asphalt layers underwent variations in its mechanical properties due to the asphalt binder content and the mix design method Marshall and Superpave. A variation of ±0.5% within the optimum asphalt binder contents was used (service tolerance) considering possible permissible variations in the asphalt binder content during the asphalt mixture manufacturing process. The values of resilient modulus and indirect tensile strength (Brazilian test) of the resulting asphalt mixtures were applied to the reference pavement structure analyzed by the me-PADS software. The results show that the variations in the asphalt binder content and the asphalt mixtures design method influence the mechanical properties and corresponding structural responses of the pavement investigated: the asphalt layers designed by the Marshall method presented greater sensitivity to the variation in asphalt binder content, which may constitute a technical differential of asphalt mixtures designed by the Superpave method.


2021 ◽  
pp. 100324
Author(s):  
Kiwon Oh ◽  
Haozhe Yi ◽  
Rui Kou ◽  
Yu Qiao
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document