A Survey on Best Proximity Point Theory in Reflexive and Busemann Convex Spaces

Author(s):  
Moosa Gabeleh

2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
N. Hussain ◽  
M. A. Kutbi ◽  
P. Salimi

We first introduce certain new concepts of --proximal admissible and ---rational proximal contractions of the first and second kinds. Then we establish certain best proximity point theorems for such rational proximal contractions in metric spaces. As an application, we deduce best proximity and fixed point results in partially ordered metric spaces. The presented results generalize and improve various known results from best proximity point theory. Several interesting consequences of our obtained results are presented in the form of new fixed point theorems which contain famous Banach's contraction principle and some of its generalizations as special cases. Moreover, some examples are given to illustrate the usability of the obtained results.





2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Mohamed Jleli ◽  
Erdal Karapinar ◽  
Bessem Samet

Very recently, Abkar and Gabeleh (2013) observed that some best proximity point results under the -property can be obtained from the same results in fixed-point theory. In this paper, motivated by this mentioned work, we show that the most best proximity point results on a metric space endowed with a partial order (under the -property) can be deduced from existing fixed-point theorems in the literature. We present various model examples to illustrate this point of view.



Filomat ◽  
2021 ◽  
Vol 35 (5) ◽  
pp. 1555-1564
Author(s):  
Mohammad Haddadi ◽  
Vahid Parvaneh ◽  
Mohammad Mursaleen

In this paper, we introduce the concept of contractive pair maps and give some necessary and sufficient conditions for existence and uniqueness of best proximity points for such pairs. In our approach, some conditions have been weakened. An application has been presented to demonstrate the usability of our results. Also, we introduce the concept of cyclic ?-contraction and cyclic asymptotic ?-contraction and give some existence and convergence theorems on best proximity point for cyclic ?-contraction and cyclic asymptotic ?-contraction mappings. The presented results extend, generalize and improve some known results from best proximity point theory and fixed-point theory.



2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
Angel Almeida ◽  
Erdal Karapınar ◽  
Kishin Sadarangani

In the very recent paper of Akbar and Gabeleh (2013), by using the notion ofP-property, it was proved that some late results about the existence and uniqueness of best proximity points can be obtained from the versions of associated existing results in the fixed point theory. Along the same line, in this paper, we prove that these results can be obtained under a weaker condition, namely, weakP-property.



2013 ◽  
Vol 2013 ◽  
pp. 1-3 ◽  
Author(s):  
Ali Abkar ◽  
Moosa Gabeleh

We show that some recent results concerning the existence of best proximity points can be obtained from the same results in fixed point theory.





2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
N. Hussain ◽  
A. Latif ◽  
P. Salimi

G-metric spaces proved to be a rich source for fixed point theory; however, the best proximity point problem has not been considered in such spaces. The aim of this paper is to introduce certain new classes of proximal contraction mappings and establish the best proximity point theorems for such kind of mappings inG-metric spaces. As a consequence of these results, we deduce certain new best proximity and fixed point results. Moreover, we present an example to illustrate the usability of the obtained results.



Sign in / Sign up

Export Citation Format

Share Document