Comparative Analysis of Load Flows and Voltage-Dependent Load Modeling Methods of Distribution Networks

Author(s):  
U. Kamal Kumar ◽  
Varaprasad Janamala

Author(s):  
Abid Ali ◽  
Nursyarizal Mohd Nor ◽  
Taib Ibrahim ◽  
Mohd Fakhizan Romlie ◽  
Kishore Bingi

This chapter proposes Big Data Analytics for the sizing and locating of solar photovoltaic farms to reduce the total energy loss in distribution networks. The Big Data Analytics, which uses the advance statistical and computational tools for the handling of large data sets, has been adopted for modeling the 15 years of solar weather data. Total Power Loss Index (TPLI) is formulated as the main objective function for the optimization problem and meanwhile bus voltage deviations and penetrations of the PV farms are calculated. To solve the optimization problem, this study adopts the Mixed Integer Optimization using Genetic Algorithm (MIOGA) technique. By considering different time varying voltage dependent load models, the proposed algorithm is applied on IEEE 33 bus and IEEE 69 bus test distribution networks and optimum results are acquired. From the results, it is revealed that compared to single PV farm, the integration of two PV farms reduced more energy loss and reduced the total size of PV farms. Big Data Analytics is found very effective for the storing, handling, processing and the visualizing of the weather Big Data.



Author(s):  
Abid Ali ◽  
Nursyarizal Mohd Nor ◽  
Taib Ibrahim ◽  
Mohd Fakhizan Romlie ◽  
Kishore Bingi

This chapter proposes a mixed-integer optimization using genetic algorithm (MIOGA) for determining the optimum sizes and placements of battery-sourced solar photovoltaic (B-SSPV) plants to reduce the total energy losses in distribution networks. Total energy loss index (TELI) is formulated as the main objective function and meanwhile bus voltage deviations and PV penetrations of B-SSPV plants are calculated. To deal the stochastic behavior of solar irradiance, 15 years of weather data is modeled by using beta probability density function (Beta-PDF). The proposed algorithm is applied on IEEE 33 bus and IEEE 69 bus test distribution networks and optimum results are acquired for different time varying voltage dependent load models. From the results, it is known that, compared to PV only, the integration of B-SSPV plants in the distribution networks resulted in higher penetration levels in distribution networks. The proposed algorithm was very effective in terms of determining the sizes of the PV plant and the battery storage, and for the charging and discharging of the battery storage.



Author(s):  
Nelson Knak Neto ◽  
Alzenira da Rosa Abaide ◽  
Vladimiro Miranda ◽  
Phillipe Vilaça Gomes ◽  
Leonel Carvalho ◽  
...  




2012 ◽  
Vol 3 (4) ◽  
pp. 1650-1659 ◽  
Author(s):  
A. Rautiainen ◽  
S. Repo ◽  
P. Jarventausta ◽  
A. Mutanen ◽  
K. Vuorilehto ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document