Relationships between self-incompatibility and S-allele constitution in inbred lines of Brussels sprouts

Euphytica ◽  
1983 ◽  
Vol 32 (1) ◽  
pp. 187-191 ◽  
Author(s):  
B. M. Smith ◽  
Janet Blyton-Conway ◽  
Cynthia Mee
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ling Ma ◽  
Chunzhi Zhang ◽  
Bo Zhang ◽  
Fei Tang ◽  
Futing Li ◽  
...  

AbstractPotato is the third most important staple food crop. To address challenges associated with global food security, a hybrid potato breeding system, aimed at converting potato from a tuber-propagated tetraploid crop into a seed-propagated diploid crop through crossing inbred lines, is under development. However, given that most diploid potatoes are self-incompatible, this represents a major obstacle which needs to be addressed in order to develop inbred lines. Here, we report on a self-compatible diploid potato, RH89-039-16 (RH), which can efficiently induce a mating transition from self-incompatibility to self-compatibility, when crossed to self-incompatible lines. We identify the S-locusinhibitor (Sli) gene in RH, capable of interacting with multiple allelic variants of the pistil-specific S-ribonucleases (S-RNases). Further, Sli gene functions like a general S-RNase inhibitor, to impart SC to RH and other self-incompatible potatoes. Discovery of Sli now offers a path forward for the diploid hybrid breeding program.


2019 ◽  
pp. 171-176
Author(s):  
J. Lora ◽  
J.I. Hormaza ◽  
M. Herrero ◽  
J. Rodrigo

2015 ◽  
Vol 181 ◽  
pp. 62-75 ◽  
Author(s):  
Daniela Farinelli ◽  
Catherine Marie Breton ◽  
Franco Famiani ◽  
André Bervillé

2012 ◽  
Vol 18 (2) ◽  
Author(s):  
B. Szikriszt ◽  
S. Ercisli ◽  
A. Hegedűs ◽  
J. Halász

Almond [Prunus dulcis (Mill.) D. A. Webb.] as one of the oldest domesticated plants is thought to have originated in central Asia. Gametophytic self-incompatibility of almond is controlled by the highly polymorphic S-locus. The S-locus encodes for an S-ribonuclease (S-RNase) protein in the pistils, which degrades RNA in self-pollen tubes and hence stops their growing. This study was carried out to detect S-RNase allelic variants in Hungarian and Eastern European almond cultivars and Turkish wild growing seedlings, and characterize their S-allele pool. Five new alleles were identifi ed, S31H, S36-S39 in Eastern European local cultivars. The village Bademli and Akdamar island are two distinct places of almond natural occurrence in Turkey. Trees growing wild around Bademli city showed greater genetic diversity than those originated on Akdamar island. Many of the previously described 45 S-RNase alleles have been also detected in these regions. Homology searches revealed that Turkish almonds carried some P. webbii alleles indicating hybridization between the two cultivars and massive introgression events. Our results supply long-awaited information on almond S-allele diversity from regions between the main cultivation centres and the centre of origin of this species; and are discussed from the aspect of methodological developments and evolution of the cultivated almond.


Sign in / Sign up

Export Citation Format

Share Document