Porin-type1 proteins in sarcoplasmic reticulum and plasmalemma of striated muscle fibres

1995 ◽  
Vol 16 (6) ◽  
pp. 595-610 ◽  
Author(s):  
Pauline R. Junankar ◽  
Angela F. Dulhunty ◽  
Suzanne M. Curtis ◽  
Suzy M. Pace ◽  
Friedrich P. Thinnes
1991 ◽  
Vol 24 (1) ◽  
pp. 1-73 ◽  
Author(s):  
Christopher C. Ashley ◽  
Ian P. Mulligan ◽  
Trevor J. Lea

It has been known for a number of years that calcium ions play a crucial role in excitation-contraction (e-c) coupling (Sandow, 1952). The majority of the calcium required for this process is derived, at least in vertebrate striated muscle fibres, from discrete intracellular stores located at sites within the cell: the terminal cysternae (tc)/junctional SR of the sarcoplasmic reticulum (SR) (Fig. 1 a). These storage sites not only form a compartment that is distinct from the sarcoplasm of the fibre, but they are also closely associated with the contractile elements, the myofibrils. The SR release sites are activated following the spread of electrical activity (Huxley and Taylor, 1958) along the transverse (T) tubular system (Eisenberg and Gage, 1967; Adrian et al. 1969a, b; Peachey, 1973) from the surface membrane (Bm).


1996 ◽  
Vol 199 (11) ◽  
pp. 2419-2428 ◽  
Author(s):  
T Lea

Ca2+ release mechanisms were studied in striated muscle from the walking legs of crabs using isometric tension recordings from isolated myofibrillar bundles. Caffeine-induced phasic contractions had properties consistent with Ca2+ release from a sarcoplasmic store, which could be optimally loaded in the presence of ATP at pCa 6.4­6.1. Ryanodine (10 µmol l-1) abolished the caffeine-induced contractions and in solutions with low Ca2+ buffering (0.1 mmol l-1 EGTA) itself caused phasic contractions, indicative of Ca2+ release. Ca2+-induced Ca2+ release (CICR) was observed in a pCa 5.8 solution (buffered by 1 mmol l-1 EGTA) as a phasic contraction of variable nature, inhibited by ryanodine (10 µmol l-1), procaine (10 mmol l-1) or benzocaine (5 mmol l-1). Ca2+ release was measured as a function of releasing pCa by using the force­time integral of the caffeine-induced contraction as an estimate of the Ca2+ remaining in the store. After the Ca2+ store had been loaded for 2 min at pCa 6.6, CICR was measured in the presence of 1 mmol l-1 Mg2+, 1 mmol l-1 EGTA and 5 mmol l-1 ATP. The threshold pCa for CICR was 6.0­6.4 under these conditions and more than 90 % of stored Ca2+ was released in 1 min by pCa values in the range 3.5­5.3. Benzocaine totally inhibited the release and promoted extra Ca2+ loading. Preliminary experiments showed a similar caffeine-releasable store in lobster abdominal muscle, which was slightly less sensitive to free [Ca2+]. It is concluded that in crustacean muscle caffeine and micromolar [Ca2+] can release Ca2+ from a ryanodine-sensitive store, which in many respects is similar to the sarcoplasmic reticulum of vertebrate skeletal and cardiac muscle.


Author(s):  
Q. Bone

Doliolids are pelagic tunicates which swim by very rapid contractions of the muscle bands that encircle their barrel-shaped bodies; the resulting jet pulses drive them forwards at instantaneous velocities up to 50 body lengths s-1 (Bone & Trueman, 1984). The obliquely-striated muscle fibres within the bands have the unique feature that they lack any kind of sarcoplasmic reticulum or sub-sarcolemmal vesicle system (Bone & Ryan, 1974). Most stages of the rather complex life-cycle of doliolids (Braconnot, 1971a) are small animals, less than 4 mm long; but in one of the species examined the largest may be up to 40 mm. This paper shows that external Ca2+ is required for contraction of the locomotor muscle fibres and that the decremental muscle potentials preceding contractions are carried by Ca2+. In younger stages, the muscle fibres within a band are electrically coupled to some extent, but in older animals, the degree of coupling decreases


The linear electrical properties of muscle fibres have been examined using intracellular electrodes for a. c. measurements and analyzing observations on the basis of cable theory. The measurements have covered the frequency range 1 c/s to 10 kc/s. Comparison of the theory for the circular cylindrical fibre with that for the ideal, one-dimensional cable indicates that, under the conditions of the experiments, no serious error would be introduced in the analysis by the geometrical idealization. The impedance locus for frog sartorius and crayfish limb muscle fibres deviates over a wide range of frequencies from that expected for a simple model in which the current path between the inside and the outside of the fibre consists only of a resistance and a capacitance in parallel. A good fit of the experimental results on frog fibres is obtained if the inside-outside admittance is considered to contain, in addition to the parallel elements R m = 3100 Ωcm 2 and C m = 2.6 μF/cm 2 , another path composed of a resistance R e = 330 Ωcm 2 in series with a capacitance C e = 4.1 μF/cm 2 , all referred to unit area of fibre surface. The impedance behaviour of crayfish fibres can be described by a similar model, the corresponding values being R m = 680 Ωcm 2 , C m = 3.9 μF/cm 2 , R e = 35 Ωcm 2 , C e = 17 μF/cm 2 . The response of frog fibres to a step-function current (with the points of voltage recording and current application close together) has been analyzed in terms of the above two-time constant model, and it is shown that neglecting the series resistance would have an appreciable effect on the agreement between theory and experiment only at times less than the halftime of rise of the response. The elements R m and C m are presumed to represent properties of the surface membrane of the fibre. R e and C e are thought to arise not at the surface, but to be indicative of a separate current path from the myoplasm through an intracellular system of channels to the exterior. In the case of crayfish fibres, it is possible that R e (when referred to unit volume) would be a measure of the resistivity of the interior of the channels, and C e the capacitance across the walls of the channels. In the case of frog fibres, it is suggested that the elements R e , C e arise from the properties of adjacent membranes of the triads in the sarcoplasmic reticulum . The possibility is considered that the potential difference across the capacitance C e may control the initiation of contraction.


1992 ◽  
Vol 282 (1) ◽  
pp. 237-242 ◽  
Author(s):  
A Jakubiec-Puka ◽  
C Catani ◽  
U Carraro

The myosin heavy-chain (MHC) isoform pattern was studied by biochemical methods in the slow-twitch (soleus) and fast-twitch (gastrocnemius) muscles of adult rats during atrophy after tenotomy and recovery after tendon regeneration. The tenotomized slow muscle atrophied more than the tenotomized fast muscle. During the 12 days after tenotomy the total MHC content decreased by about 85% in the slow muscle, and only by about 35% in the fast muscle. In the slow muscle the ratio of MHC-1 to MHC-2A(2S) remained almost unchanged, showing that similar diminution of both isoforms occurs. In the fast muscle the MHC-2A/MHC-2B ratio decreased, showing the loss of MHC-2A mainly. After tendon regeneration, the slow muscle recovered earlier than the fast muscle. Full recovery of the muscles was not observed until up to 4 months later. The embryonic MHC, which seems to be expressed in denervated adult muscle fibres, was not detected by immunoblotting in the tenotomized muscles during either atrophy or recovery after tendon regeneration. The influence of tenotomy and denervation on expression of the MHC isoforms is compared. The results show that: (a) MHC-1 and MHC-2A(2S) are very sensitive to tenotomy, whereas MHC-2B is much less sensitive; (b) expression of the embryonic MHC in adult muscle seems to be inhibited by the intact neuromuscular junction.


Parasite ◽  
2012 ◽  
Vol 19 (1) ◽  
pp. 19-29
Author(s):  
E.H. Fall ◽  
M. Diagne ◽  
K. Junker ◽  
J.M. Duplantier ◽  
K. Ba ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document