scholarly journals Caffeine and micromolar Ca2+ concentrations can release Ca2+ from ryanodine-sensitive stores in crab and lobster striated muscle fibres

1996 ◽  
Vol 199 (11) ◽  
pp. 2419-2428 ◽  
Author(s):  
T Lea

Ca2+ release mechanisms were studied in striated muscle from the walking legs of crabs using isometric tension recordings from isolated myofibrillar bundles. Caffeine-induced phasic contractions had properties consistent with Ca2+ release from a sarcoplasmic store, which could be optimally loaded in the presence of ATP at pCa 6.4­6.1. Ryanodine (10 µmol l-1) abolished the caffeine-induced contractions and in solutions with low Ca2+ buffering (0.1 mmol l-1 EGTA) itself caused phasic contractions, indicative of Ca2+ release. Ca2+-induced Ca2+ release (CICR) was observed in a pCa 5.8 solution (buffered by 1 mmol l-1 EGTA) as a phasic contraction of variable nature, inhibited by ryanodine (10 µmol l-1), procaine (10 mmol l-1) or benzocaine (5 mmol l-1). Ca2+ release was measured as a function of releasing pCa by using the force­time integral of the caffeine-induced contraction as an estimate of the Ca2+ remaining in the store. After the Ca2+ store had been loaded for 2 min at pCa 6.6, CICR was measured in the presence of 1 mmol l-1 Mg2+, 1 mmol l-1 EGTA and 5 mmol l-1 ATP. The threshold pCa for CICR was 6.0­6.4 under these conditions and more than 90 % of stored Ca2+ was released in 1 min by pCa values in the range 3.5­5.3. Benzocaine totally inhibited the release and promoted extra Ca2+ loading. Preliminary experiments showed a similar caffeine-releasable store in lobster abdominal muscle, which was slightly less sensitive to free [Ca2+]. It is concluded that in crustacean muscle caffeine and micromolar [Ca2+] can release Ca2+ from a ryanodine-sensitive store, which in many respects is similar to the sarcoplasmic reticulum of vertebrate skeletal and cardiac muscle.

1993 ◽  
Vol 265 (4) ◽  
pp. H1334-H1341 ◽  
Author(s):  
G. B. Luciani ◽  
A. D'Agnolo ◽  
A. Mazzucco ◽  
V. Gallucci ◽  
G. Salviati

The effects of global ischemia on the contractile system and on sarcoplasmic reticulum (SR) function were studied by measuring the isometric tension and the SR Ca2+ release activity of chemically skinned cardiac fiber preparations from seven patients undergoing open-heart surgery. Ten minutes of ischemia caused 1) a decrease in the myofilament sensitivity to Ca2+ (expected Ca2+ concentration giving half-maximal tension; from 0.69 +/- 0.04 to 1.38 +/- 0.06 microM, n = 7) and in the cooperativity index (Hill coefficient; from 2.61 +/- 0.45 to 0.92 +/- 0.15, n = 7), 2) a decrease in myosin light chain phosphorylation, and 3) a 300% increase in the threshold caffeine concentration for SR Ca2+ efflux channel activation, with a 30% reduction in the rate of Ca2+ release by caffeine at threshold concentrations and a 23% reduction in the rate of release by 20 mM caffeine. After preincubation with 5 microM trifluoperazine, a calmodulin antagonist, the caffeine threshold of ischemic and control cardiac muscle became comparable. Most changes were reversed by reperfusion, while the caffeine threshold was still two times greater than control. These results indicate that ischemia caused alterations of the cardiac muscle contractile apparatus and the SR that were reversed only after reperfusion.


Parasitology ◽  
1992 ◽  
Vol 104 (2) ◽  
pp. 337-346 ◽  
Author(s):  
S. M. Ward ◽  
J. M. Allen ◽  
G. McKerr

SUMMARYThe tentacular bulb of Grillotia erinaceus metacestodes consists of obliquely striated muscle fibres with obvious motor end-plates. In this study isometric tension recordings and intracellular microelectrodes have been used to record mechanical and electrical activity from single isolated bulbs. Bulbs were mechanically quiescent and displayed resting membrane polentials (RMP) in the region of −49 to −64 mV with a mean RMP of −56 mV (n = 60). The membrane potential varied with [K+]o in a manner consistent with the RMP being determined largely by the K+ equilibrium potential. High K+ solution (> 15 mM) caused membrane depolarization and contraction of the preparation with the contraction showing both phasic and tonic components. L-glutamate caused membrane depolarization, contraction of quiescent preparations and increased the amplitude of electrically evoked responses. In contrast, 5-HT, dopamine, histamine, adrenaline, GABA, noradrenaline and D-glutamate, at concentrations up to and including 10−3 M, were without apparent affect, although acetylcholine, at relatively high concentrations (≥ 10−4 M) slightly reduced the amplitude of field-evoked contractions.


1982 ◽  
Vol 37 (7-8) ◽  
pp. 665-678 ◽  
Author(s):  
Joachim R. Sommer

Abstract The sarcoplasmic reticulum in situ is an intricate tubular network that surrounds the contractile material in striated muscle cells. Its topographical relationship to other intracellular components, especially the myofibrils, is rather rigidly mainiained by a cytoskeleton which enmeshes Z line material and sarcoplasmic reticulum and, ultimately, is anchored at the plasmalemma. As a result, the two main components of the sarcoplasmic reticulum, the junctional SR and the free SR, retain their typical location in the A band region and in the I band region, respectively. The junc­tional SR, which is thought to be the site for calcium storage and release for contraction, is, thus, always well within one micron of the regulatory proteins associated with the actin filaments. The junctional SR, a synonym for terminal cisterna applying to both skeletal and cardiac muscle, is generally held to be involved in the translation of the action potential into calcium release, mainly because of the close topographic apposition between the junctional SR and the plasmalemma, especially in skeletal muscle. This attractive structure-function correlation is challenged by the observation that in bird cardiac muscle 80% of the junctional SR is spacially far removed from plas­malemma, the site of electrical activity. This anomalous topography is not in conflict with the notion that translation of the action potential into calcium release may be accomplished by a dif­fusible transmitter substance, e.g. calcium. Any hypothesis dealing with this problem must ac­ count for the anatomy of the bird heart.


Biomolecules ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 109
Author(s):  
Stefano Perni

Contraction of striated muscle is triggered by a massive release of calcium from the sarcoplasmic reticulum (SR) into the cytoplasm. This intracellular calcium release is initiated by membrane depolarization, which is sensed by voltage-gated calcium channels CaV1.1 (in skeletal muscle) and CaV1.2 (in cardiac muscle) in the plasma membrane (PM), which in turn activate the calcium-releasing channel ryanodine receptor (RyR) embedded in the SR membrane. This cross-communication between channels in the PM and in the SR happens at specialized regions, the SR-PM junctions, where these two compartments come in close proximity. Junctophilin1 and Junctophilin2 are responsible for the formation and stabilization of SR-PM junctions in striated muscle and actively participate in the recruitment of the two essential players in intracellular calcium release, CaV and RyR. This short review focuses on the roles of junctophilins1 and 2 in the formation and organization of SR-PM junctions in skeletal and cardiac muscle and on the functional consequences of the absence or malfunction of these proteins in striated muscle in light of recently published data and recent advancements in protein structure prediction.


1991 ◽  
Vol 24 (1) ◽  
pp. 1-73 ◽  
Author(s):  
Christopher C. Ashley ◽  
Ian P. Mulligan ◽  
Trevor J. Lea

It has been known for a number of years that calcium ions play a crucial role in excitation-contraction (e-c) coupling (Sandow, 1952). The majority of the calcium required for this process is derived, at least in vertebrate striated muscle fibres, from discrete intracellular stores located at sites within the cell: the terminal cysternae (tc)/junctional SR of the sarcoplasmic reticulum (SR) (Fig. 1 a). These storage sites not only form a compartment that is distinct from the sarcoplasm of the fibre, but they are also closely associated with the contractile elements, the myofibrils. The SR release sites are activated following the spread of electrical activity (Huxley and Taylor, 1958) along the transverse (T) tubular system (Eisenberg and Gage, 1967; Adrian et al. 1969a, b; Peachey, 1973) from the surface membrane (Bm).


1995 ◽  
Vol 16 (6) ◽  
pp. 595-610 ◽  
Author(s):  
Pauline R. Junankar ◽  
Angela F. Dulhunty ◽  
Suzanne M. Curtis ◽  
Suzy M. Pace ◽  
Friedrich P. Thinnes

1993 ◽  
Vol 181 (1) ◽  
pp. 95-105 ◽  
Author(s):  
H. Ushio ◽  
S. Watabe ◽  
M. Iino

The isometric tension and membrane potential of single skeletal muscle fibres from the flexor muscle of the carpopodite in the meropodite of crayfish Procambarus clarkii (Girard) were studied to determine whether crayfish muscle contraction requires Ca2+ release from the sarcoplasmic reticulum. Contraction elicited by brief extracellular electrical stimulation was reduced by the removal of Ca2+ or by the addition of 25 micromolar nicardipine in crayfish Ringer's solution. Addition of 30 micromolar ryanodine with 1 mmol l-1 caffeine induced a transient contracture, the peak tension of which was 10–30 % of that of the high-K+ induced contracture and which declined to the pretreatment level in 20–60 min. After ryanodine-caffeine treatment, 30 mmol l-1 caffeine failed to induce contraction, suggesting that intracellular Ca2+ stores had been exhausted by the treatment. Extracellular electrical stimulation also failed to induce contraction after ryanodine-caffeine treatment, although the resting potential was not changed. These results suggest that Ca2+ release from the sarcoplasmic reticulum, together with Ca2+ influx via nicardipine-sensitive Ca2+ channels, is essential to the contraction of crayfish leg muscle fibres after a brief membrane depolarization.


1971 ◽  
Vol 55 (1) ◽  
pp. 111-122
Author(s):  
N. TASHIRO ◽  
T. YAMAMOTO

1. In extension of preceding studies on the mechanical properties of the longitudinal muscle fibres of the earthworm, the phasic and tonic contractions were analysed under various conditions. 2. The phasic contractions appeared on the tonic contraction which was maintained at a steady level by repetitive stimulation, and the tonic contraction decayed very slowly after cessation of stimulation. 3. The length-tension curve indicated that the phasic and tonic contractions were both affected similarly by changing the muscle length. 4. The mechanical ‘active state’ was investigated during the phasic and tonic contractions by means of the quick-release method. During the phasic contraction the ability to redevelop the tension was observed. During the early phase of the tonic contraction the muscle was in the ‘active state’, but the tonic contraction continued even after the tension redevelopment had nearly ceased. 5. The tonic contraction was absent when the temperature was raised to about 30 °C. 5-Hydroxytryptamine (2.5 x 10-6 M) decreased the tonic more than the phasic contraction. The tonic contraction disappeared completely in the presence of acetylcholine (5.5 x 10-4 M), while the phasic contraction was reduced but not abolished. γ-aminobutyric acid (10-6 to 5 x 10-4 M) had no effect on the contractions. 6. Transition-metal ions suppressed mainly the phasic contraction in the order of Mn2+ > Co2+ > Ni2+. The decrease in the phasic contraction was proportional to the logarithm of concentration of added divalent cations. The tonic contraction was also reduced but at higher concentration than the phasic contraction. 7. It is postulated that, by depolarization produced by electrical stimulation or by acetylcholine, calcium ions are released from the plasma membrane and also from the sarcoplasmic reticulum. The phasic contraction might be generated mainly by calcium ions released from the membrane, and the tonic contraction might be caused mainly by calcium ions released from the sarcoplasmic reticulum.


Author(s):  
Q. Bone

Doliolids are pelagic tunicates which swim by very rapid contractions of the muscle bands that encircle their barrel-shaped bodies; the resulting jet pulses drive them forwards at instantaneous velocities up to 50 body lengths s-1 (Bone & Trueman, 1984). The obliquely-striated muscle fibres within the bands have the unique feature that they lack any kind of sarcoplasmic reticulum or sub-sarcolemmal vesicle system (Bone & Ryan, 1974). Most stages of the rather complex life-cycle of doliolids (Braconnot, 1971a) are small animals, less than 4 mm long; but in one of the species examined the largest may be up to 40 mm. This paper shows that external Ca2+ is required for contraction of the locomotor muscle fibres and that the decremental muscle potentials preceding contractions are carried by Ca2+. In younger stages, the muscle fibres within a band are electrically coupled to some extent, but in older animals, the degree of coupling decreases


Sign in / Sign up

Export Citation Format

Share Document