Linear electrical properties of striated muscle fibres observed with intracellular electrodes

The linear electrical properties of muscle fibres have been examined using intracellular electrodes for a. c. measurements and analyzing observations on the basis of cable theory. The measurements have covered the frequency range 1 c/s to 10 kc/s. Comparison of the theory for the circular cylindrical fibre with that for the ideal, one-dimensional cable indicates that, under the conditions of the experiments, no serious error would be introduced in the analysis by the geometrical idealization. The impedance locus for frog sartorius and crayfish limb muscle fibres deviates over a wide range of frequencies from that expected for a simple model in which the current path between the inside and the outside of the fibre consists only of a resistance and a capacitance in parallel. A good fit of the experimental results on frog fibres is obtained if the inside-outside admittance is considered to contain, in addition to the parallel elements R m = 3100 Ωcm 2 and C m = 2.6 μF/cm 2 , another path composed of a resistance R e = 330 Ωcm 2 in series with a capacitance C e = 4.1 μF/cm 2 , all referred to unit area of fibre surface. The impedance behaviour of crayfish fibres can be described by a similar model, the corresponding values being R m = 680 Ωcm 2 , C m = 3.9 μF/cm 2 , R e = 35 Ωcm 2 , C e = 17 μF/cm 2 . The response of frog fibres to a step-function current (with the points of voltage recording and current application close together) has been analyzed in terms of the above two-time constant model, and it is shown that neglecting the series resistance would have an appreciable effect on the agreement between theory and experiment only at times less than the halftime of rise of the response. The elements R m and C m are presumed to represent properties of the surface membrane of the fibre. R e and C e are thought to arise not at the surface, but to be indicative of a separate current path from the myoplasm through an intracellular system of channels to the exterior. In the case of crayfish fibres, it is possible that R e (when referred to unit volume) would be a measure of the resistivity of the interior of the channels, and C e the capacitance across the walls of the channels. In the case of frog fibres, it is suggested that the elements R e , C e arise from the properties of adjacent membranes of the triads in the sarcoplasmic reticulum . The possibility is considered that the potential difference across the capacitance C e may control the initiation of contraction.

1997 ◽  
Vol 43 ◽  
pp. 15-30
Author(s):  
Andrew Huxley

Richard Adrian was a distinguished electrophysiologist who cleared up many of the puzzles about the electrical behaviour of striated muscle. The situation in this tissue is exceptionally complex, both because the surface membrane is invaginated to form the transverse tubules, whose surface area is several times that of the fibre surface, and because substantial amounts of charge are carried across these membranes by processes connected with the turning on of contraction itself. Apart from his scientific work, he played an important part in the life of Cambridge University, as Master of Pembroke College for 11 years and as Vice-Chancellor for two. In the House of Lords, he contributed in an important way to the debates leading up to the new Act of 1986 governing experiments on living animals, and took a major part in the defence of academic freedom in the universities when it was threatened in the Education Reform Bill of 1988.


1991 ◽  
Vol 24 (1) ◽  
pp. 1-73 ◽  
Author(s):  
Christopher C. Ashley ◽  
Ian P. Mulligan ◽  
Trevor J. Lea

It has been known for a number of years that calcium ions play a crucial role in excitation-contraction (e-c) coupling (Sandow, 1952). The majority of the calcium required for this process is derived, at least in vertebrate striated muscle fibres, from discrete intracellular stores located at sites within the cell: the terminal cysternae (tc)/junctional SR of the sarcoplasmic reticulum (SR) (Fig. 1 a). These storage sites not only form a compartment that is distinct from the sarcoplasm of the fibre, but they are also closely associated with the contractile elements, the myofibrils. The SR release sites are activated following the spread of electrical activity (Huxley and Taylor, 1958) along the transverse (T) tubular system (Eisenberg and Gage, 1967; Adrian et al. 1969a, b; Peachey, 1973) from the surface membrane (Bm).


2015 ◽  
Vol 112 (9) ◽  
pp. 2658-2663 ◽  
Author(s):  
Hatef Sadeghi ◽  
Jan A. Mol ◽  
Chit Siong Lau ◽  
G. Andrew D. Briggs ◽  
Jamie Warner ◽  
...  

Provided the electrical properties of electroburnt graphene junctions can be understood and controlled, they have the potential to underpin the development of a wide range of future sub-10-nm electrical devices. We examine both theoretically and experimentally the electrical conductance of electroburnt graphene junctions at the last stages of nanogap formation. We account for the appearance of a counterintuitive increase in electrical conductance just before the gap forms. This is a manifestation of room-temperature quantum interference and arises from a combination of the semimetallic band structure of graphene and a cross-over from electrodes with multiple-path connectivity to single-path connectivity just before breaking. Therefore, our results suggest that conductance enlargement before junction rupture is a signal of the formation of electroburnt junctions, with a picoscale current path formed from a single sp2 bond.


1992 ◽  
Vol 282 (1) ◽  
pp. 237-242 ◽  
Author(s):  
A Jakubiec-Puka ◽  
C Catani ◽  
U Carraro

The myosin heavy-chain (MHC) isoform pattern was studied by biochemical methods in the slow-twitch (soleus) and fast-twitch (gastrocnemius) muscles of adult rats during atrophy after tenotomy and recovery after tendon regeneration. The tenotomized slow muscle atrophied more than the tenotomized fast muscle. During the 12 days after tenotomy the total MHC content decreased by about 85% in the slow muscle, and only by about 35% in the fast muscle. In the slow muscle the ratio of MHC-1 to MHC-2A(2S) remained almost unchanged, showing that similar diminution of both isoforms occurs. In the fast muscle the MHC-2A/MHC-2B ratio decreased, showing the loss of MHC-2A mainly. After tendon regeneration, the slow muscle recovered earlier than the fast muscle. Full recovery of the muscles was not observed until up to 4 months later. The embryonic MHC, which seems to be expressed in denervated adult muscle fibres, was not detected by immunoblotting in the tenotomized muscles during either atrophy or recovery after tendon regeneration. The influence of tenotomy and denervation on expression of the MHC isoforms is compared. The results show that: (a) MHC-1 and MHC-2A(2S) are very sensitive to tenotomy, whereas MHC-2B is much less sensitive; (b) expression of the embryonic MHC in adult muscle seems to be inhibited by the intact neuromuscular junction.


1979 ◽  
Vol 78 (1) ◽  
pp. 281-293
Author(s):  
MIKKO HARRI ◽  
ERNST FLOREY

1. Crayfish, Astacus leptodactylus, were acclimated to 12 °C and to 25 °C. Nerve muscle preparations (closer muscle of walking legs) were subjected to temperatures ranging from 6 to 32 °C. 2. The resting membrane potential of muscle fibres was found to increase with temperature in a linear manner, but with a change in slope at around 170 in cold-acclimated preparations, and around 24 °C in warm-acclimated ones. 3. Temperature acclimation shifted the temperature range of maximal amplitudes of fast and slow e.j.p.s toward the acclimation temperature. Optimal facilitation of slow e.j.p.s also occurred near the respective acclimation temperature. 4. E.j.p. decay time is nearly independent of temperature in the upper temperature range but increases steeply when the temperature falls below a critical range around 17 °C in preparations from cold-acclimated animals, and around 22 °C after acclimation to 25 °C. 5. Peak depolarizations reached by summating facilitated e.j.p.s are conspicuously independent of temperature over a wide range (slow and fast e.j.p.s of cold-acclimated preparations, fast e.j.p.s of warm-acclimated ones) which extends to higher temperatures after warm acclimation in the case of fast e.j.p.s. In warm-acclimated preparations the peak depolarization of slow e.j.p.s first falls then rises and falls again as the temperature increases from 8 to 32 °C. 6. Tension development elicited by stimulation of the slow axon at a given frequency reaches maximal values at the lower end of the temperature range in cold-acclimated preparations. The maximum is shifted towards 20 °C after warm acclimation. Fast contractions decline with temperature; possible acclimation effects are masked by the great lability of fast contractions in warm-acclimated preparations. 7. It is suggested that changes in the composition of membrane lipids may be responsible for the effects of acclimation on the electrical parameters and their characteristic temperature dependence.


Sign in / Sign up

Export Citation Format

Share Document