Frequency tuning and response latencies at three levels in the brainstem of the echolocating bat, Eptesicus fuscus

1994 ◽  
Vol 174 (6) ◽  
Author(s):  
S. Haplea ◽  
E. Covey ◽  
J.H. Casseday
1998 ◽  
Vol 80 (5) ◽  
pp. 2743-2764 ◽  
Author(s):  
Jos J. Eggermont

Eggermont, Jos J. Representation of spectral and temporal sound features in three cortical fields of the cat. Similarities outweigh differences. J. Neurophysiol. 80: 2743–2764, 1998. This study investigates the degree of similarity of three different auditory cortical areas with respect to the coding of periodic stimuli. Simultaneous single- and multiunit recordings in response to periodic stimuli were made from primary auditory cortex (AI), anterior auditory field (AAF), and secondary auditory cortex (AII) in the cat to addresses the following questions: is there, within each cortical area, a difference in the temporal coding of periodic click trains, amplitude-modulated (AM) noise bursts, and AM tone bursts? Is there a difference in this coding between the three cortical fields? Is the coding based on the temporal modulation transfer function (tMTF) and on the all-order interspike-interval (ISI) histogram the same? Is the perceptual distinction between rhythm and roughness for AM stimuli related to a temporal versus spatial representation of AM frequency in auditory cortex? Are interarea differences in temporal response properties related to differences in frequency tuning? The results showed that: 1) AM stimuli produce much higher best modulation frequencies (BMFs) and limiting rates than periodic click trains. 2) For periodic click trains and AM noise, the BMFs and limiting rates were not significantly different for the three areas. However, for AM tones the BMF and limiting rates were about a factor 2 lower in AAF compared with the other areas. 3) The representation of stimulus periodicity in ISIs resulted in significantly lower mean BMFs and limiting rates compared with those estimated from the tMTFs. The difference was relatively small for periodic click trains but quite large for both AM stimuli, especially in AI and AII. 4) Modulation frequencies <20 Hz were represented in the ISIs, suggesting that rhythm is coded in auditory cortex in temporal fashion. 5) In general only a modest interdependence of spectral- and temporal-response properties in AI and AII was found. The BMFs were correlated positively with characteristic frequency in AAF. The limiting rate was positively correlated with the frequency-tuning curve bandwidth in AI and AII but not in AAF. Only in AAF was a correlation between BMF and minimum latency was found. Thus whereas differences were found in the frequency-tuning curve bandwidth and minimum response latencies among the three areas, the coding of periodic stimuli in these areas was fairly similar with the exception of the very poor representation of AM tones in AII. This suggests a strong parallel processing organization in auditory cortex.


2008 ◽  
Vol 100 (2) ◽  
pp. 1127-1134 ◽  
Author(s):  
Xiaofeng Ma ◽  
Nobuo Suga

The central auditory system creates various types of neurons tuned to different acoustic parameters other than a specific frequency. The response latency of auditory neurons typically shortens with an increase in stimulus intensity. However, ∼10% of collicular neurons of the little brown bat show a “paradoxical latency-shift (PLS)”: long latencies to intense sounds but short latencies to weak sounds. These neurons presumably are involved in the processing of target distance information carried by a pair of an intense biosonar pulse and its weak echo. Our current studies show that collicular PLS neurons of the big brown bat are modulated by the corticofugal (descending) system. Electric stimulation of cortical auditory neurons evoked two types of changes in the PLS neurons, depending on the relationship in the best frequency (BF) between the stimulated cortical and recorded collicular neurons. When the BF was matched between them, the cortical stimulation did not shift the BFs of the collicular neurons and shortened their response latencies at intense sounds so that the PLS became smaller. When the BF was unmatched, however, the cortical stimulation shifted the BFs of the collicular neurons and lengthened their response latencies at intense sounds, so that the PLS became larger. Cortical electric stimulation also modulated the response latencies of non-PLS neurons. It produced an inhibitory frequency tuning curve or curves. Our findings indicate that corticofugal feedback is involved in shaping the spectrotemporal patterns of responses of subcortical auditory neurons presumably through inhibition.


2013 ◽  
Vol 25 (9) ◽  
pp. 1517-1526 ◽  
Author(s):  
Michael Brosch ◽  
Eike Budinger ◽  
Henning Scheich

Synchronized neuronal firing in cortex has been implicated in feature binding, attentional selection, and other cognitive processes. This study addressed the question whether different cortical fields are distinct by rules according to which neurons engage in synchronous firing. To this end, we simultaneously recorded the multiunit firing at several sites within the primary and the caudomedial auditory cortical field of anesthetized macaque monkeys, determined their responses to pure tones, and calculated the cross-correlation function of the spontaneous firing of pairs of units. In the primary field, the likelihood of synchronous firing of pairs of units increased with the similarity of their frequency tuning and their response latencies. In the caudomedial field, by contrast, the likelihood of synchronization was highest when pairs of units had an octave and other harmonic relationships and when units had different response latencies. The differences in synchrony of the two fields were not paralleled by differences in distributions of best frequency, bandwidth of tuning curves, and response latency. Our findings suggest that neuronal synchrony in different cortical fields may underlie the establishment of specific relationships between the sound features that are represented by the firing of the neurons and which follow the Gestalt laws of similarity in the primary field and good continuation in the caudomedial field.


1984 ◽  
Vol 52 (4) ◽  
pp. 709-723 ◽  
Author(s):  
E. I. Knudsen

Auditory units in the optic tectum of the barn owl (Tyto alba) were studied under free-field conditions with a movable sound source. These units are selective for sound location and their spatial tuning varies systematically across the tectum, forming a map of space (8). I found that frequency tuning, response latencies, and thresholds of units changed in parallel with their spatial tuning, suggesting that as a consequence these properties also are topographically distributed in the optic tectum. Response rates were determined primarily by the location of the sound source. Regardless of sound intensity, only stimuli delivered from a restricted “best area” elicited vigorous responses. Minimum response latencies were shortest for units with frontal best areas and increased systematically for units with best areas located more peripherally. The response latencies of units with best areas centered within 25 degrees of the owl's visual axis were virtually independent of sound intensity and speaker position. The latencies of units with more peripheral best areas varied with speaker position and were shortest when the speaker was in the best area. Thresholds to noise stimuli were lowest for units with best areas directly in front of the owl and increased systematically for units with best areas located more peripherally. Thus, in the representation of frontal space, where units have the smallest receptive fields and the magnification of space is the greatest (8), units also respond to the weakest sound fields. Many units (20%) could not be driven with tonal stimuli; of those that could, most were broadly tuned for frequency. Characteristic frequencies and high-frequency cutoffs shifted lower as best areas moved peripherally. High-frequency tones, which excited units with frontal best areas, either inhibited or failed to drive units with peripheral best areas. These systematic changes in unit response properties influence how sounds from different locations are represented in the tectum and reflect integrative strategies used by the owl's auditory system in deriving a representation of auditory space.


2010 ◽  
Vol 103 (6) ◽  
pp. 3424-3436 ◽  
Author(s):  
Lucas Pinto ◽  
Jerome Baron

The transformation of spatial (SF) and temporal frequency (TF) tuning functions from broad-band/low-pass to narrow band-pass profiles is one of the key emergent properties of neurons in the mammalian primary visual cortex (V1). The mechanisms underlying such transformation are still a matter of ongoing debate. With the aim of providing comparative insights into the issue, we analyzed various aspects of the spatiotemporal tuning dynamics of neurons in the visual wulst of four awake owls. The wulst is the avian telencephalic target of the retinothalamofugal pathway and, in owls, bears striking functional analogy with V1. Most neurons in our sample exhibited fast and large-magnitude adaptation to the visual stimuli with response latencies very similar to those reported for V1. Moreover, latency increased as a function of stimulus SF but not TF, which suggests that parvo- and magno-like geniculate inputs could be converging onto single wulst neurons. No net shifts in preferred SF or TF were observed along the initial second of stimulation, but bandwidth decreased roughly during the first 200 ms after response latency for both stimulus dimensions. For SF, this occurred exclusively as a consequence of low-frequency suppression, whereas suppression was observed both at the low- and high-frequency limbs of TF tuning curves. Overall these results indicate that SF and TF tuning curves in the wulst are shaped by both feedforward and intratelencephalic suppressive mechanisms, similarly to what seems to be the case in the mammalian striate cortex.


1979 ◽  
Vol 42 (1) ◽  
pp. 123-136 ◽  
Author(s):  
D. P. Phillips ◽  
D. R. Irvine

1. Extracellular microelectrode recordings have been made of 429 single neurons in the pulvinar-posterior (Pul-PO) complex and adjacent regions of the thalamus of cats anesthetized with either sodium pentobarbital or alpha-chloralose. Controlled acoustic stimuli were presented by sealed systems incorporating probe microphone assemblies. 2. Neurons in pulvinar, lateralis posterior, and nucleus posterior were unresponsive to acoustic stimulation. Few cells in medial PO were observed to receive acoustic input, while sensitivity to tonal stimuli was a general feature of driven cells in other PO divisions. 3. Cells in lateral PO were generally sharply tuned to stimulus frequency, while the majority of cells in magnocellular medial geniculate and intermediate division of PO were broadly tuned. 4. Neurons in lateral PO and magnocellular medial geniculate had short response latencies to acoustic stimulation. Cells in intermediate division of PO were more often long latency. 5. Divisions of PO could not be differentiated on the basis of their binaural properties. Cells receiving excitatory input from solely the contralateral ear (E/O) or fros with onset discharge patterns showed occlusive binaural interaction properties. For cells with multiple-component discharge patterns, individual response components frequently had different patterns of binaural input and/or interaction. 6. On the basis of their discharge patterns, short latency, and frequency-tuning properties, it is suggested that lateral PO and magnocellular medial geniculate might derive their acoustic input from different divisions of the inferior colliculus. In contrast, the long latencies of units in PO intermediate division suggests a corticofugal input. 7. These data support anatomical parcelations of the Pul-PO complex, and the suggestion that this complex might provide acoustic input to the association cortices is evaluated.


Sign in / Sign up

Export Citation Format

Share Document