Activation phase ensures kinematic efficacy in flight-steering muscles of Drosophila melanogaster

1996 ◽  
Vol 179 (3) ◽  
Author(s):  
F.O. Lehmann ◽  
K.G. G�tz

1996 ◽  
Vol 199 (8) ◽  
pp. 1711-1726 ◽  
Author(s):  
G Heide ◽  
K G Götz

Flight control in the fruitfly Drosophila melanogaster is achieved by minute sets of muscles on either side of the thorax. Control responses of wings and muscles were elicited during fixed flight by moving a striped pattern in front of the eyes. For example, pattern motion from the lower right to the upper left signals to the test fly a rotatory course deviation to the right and simultaneously a translatory altitude displacement downwards. The counteracting response to the displacement of the retinal image is an increase in thrust and lift on the right, accomplished mainly by increasing the wingbeat amplitude (WBA) on that side. A comparison of such responses with the simultaneously recorded action potentials in the prominent basalar muscles M.b1 and M.b2 and axillary muscles M.I1 and M.III1 on either side suggests that three of these muscles act on the WBA more or less independently and contribute to the optomotor control of course and altitude. During flight, M.b1 is almost continuously active with a frequency equal to or slightly below 1 spike per wingbeat cycle. The spikes occur within a narrow phase interval of this cycle, normally at the beginning of the transition from upstroke to downstroke. However, the visual stimulus described above causes a substantial phase lead in M.b1 on the right; the spikes occur shortly before the end of the upstroke. Such phase shifts are accompanied by comparatively smooth 'tonic' responses of the WBA. The activities of M.b2 and M.I1 are normally very low. However, the stimulus described above activates M.b2 on the right in a phase interval approximately two-thirds into the upstroke and M.I1 on the left in a phase interval at the beginning of the downstroke. The spikes tend to occur in bursts. These bursts are correlated with WBA-increasing 'hitches' (rapid changes in amplitude) on the right and WBA-decreasing hitches on the left. As fast 'phasic' responses, the burst-induced hitches are likely to account for the course-controlling 'body saccades' observed during free flight. For unknown reasons, M.I1 is activated by pattern motion but cannot conceivably assist the other muscles in altitude control. Unlike its homologues in larger flies (Musca domestica, Calliphora erythrocephala), M.III1 does not participate in optomotor flight control. Its activation seems to support the termination of flight and wing retraction at rest. The essential properties of the three pairs of muscles M.b1, M.b2 and M.I1 resemble those found in larger flies; the muscles are controlled by motion detectors with muscle-specific 'preferred directions' in the hexagonal array of retinal elements. Optomotor control of the three pairs of muscles in Drosophila melanogaster could explain most, but not all, of the WBA responses recorded so far.



2020 ◽  
Author(s):  
Gesa F. Dinges ◽  
Alexander S. Chockley ◽  
Till Bockemühl ◽  
Kei Ito ◽  
Alexander Blanke ◽  
...  


2001 ◽  
Vol 7 (S2) ◽  
pp. 1012-1013
Author(s):  
Uyen Tram ◽  
William Sullivan

Embryonic development is a dynamic event and is best studied in live animals in real time. Much of our knowledge of the early events of embryogenesis, however, comes from immunofluourescent analysis of fixed embryos. While these studies provide an enormous amount of information about the organization of different structures during development, they can give only a static glimpse of a very dynamic event. More recently real-time fluorescent studies of living embryos have become much more routine and have given new insights to how different structures and organelles (chromosomes, centrosomes, cytoskeleton, etc.) are coordinately regulated. This is in large part due to the development of commercially available fluorescent probes, GFP technology, and newly developed sensitive fluorescent microscopes. For example, live confocal fluorescent analysis proved essential in determining the primary defect in mutations that disrupt early nuclear divisions in Drosophila melanogaster. For organisms in which GPF transgenics is not available, fluorescent probes that label DNA, microtubules, and actin are available for microinjection.



2003 ◽  
Vol 39 ◽  
pp. 11-24 ◽  
Author(s):  
Justin V McCarthy

Apoptosis is an evolutionarily conserved process used by multicellular organisms to developmentally regulate cell number or to eliminate cells that are potentially detrimental to the organism. The large diversity of regulators of apoptosis in mammalian cells and their numerous interactions complicate the analysis of their individual functions, particularly in development. The remarkable conservation of apoptotic mechanisms across species has allowed the genetic pathways of apoptosis determined in lower species, such as the nematode Caenorhabditis elegans and the fruitfly Drosophila melanogaster, to act as models for understanding the biology of apoptosis in mammalian cells. Though many components of the apoptotic pathway are conserved between species, the use of additional model organisms has revealed several important differences and supports the use of model organisms in deciphering complex biological processes such as apoptosis.



2014 ◽  
Vol 56 ◽  
pp. 69-83 ◽  
Author(s):  
Ko-Fan Chen ◽  
Damian C. Crowther

The formation of amyloid aggregates is a feature of most, if not all, polypeptide chains. In vivo modelling of this process has been undertaken in the fruitfly Drosophila melanogaster with remarkable success. Models of both neurological and systemic amyloid diseases have been generated and have informed our understanding of disease pathogenesis in two main ways. First, the toxic amyloid species have been at least partially characterized, for example in the case of the Aβ (amyloid β-peptide) associated with Alzheimer's disease. Secondly, the genetic underpinning of model disease-linked phenotypes has been characterized for a number of neurodegenerative disorders. The current challenge is to integrate our understanding of disease-linked processes in the fly with our growing knowledge of human disease, for the benefit of patients.



1987 ◽  
Vol 101 (1) ◽  
pp. 90-93 ◽  
Author(s):  
Stephen Zawistowski ◽  
Rollin C. Richmond


Sign in / Sign up

Export Citation Format

Share Document