activation phase
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 9)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Zeyu Wang ◽  
Ziqun Zhou ◽  
Haibin Shen ◽  
Qi Xu ◽  
Kejie Huang

<div>Electroencephalography (EEG) emotion recognition, an important task in Human-Computer Interaction (HCI), has made a great breakthrough with the help of deep learning algorithms. Although the application of attention mechanism on conventional models has improved its performance, most previous research rarely focused on multiplex EEG features jointly, lacking a compact model with unified attention modules. This study proposes Joint-Dimension-Aware Transformer (JDAT), a robust model based on squeezed Multi-head Self-Attention (MSA) mechanism for EEG emotion recognition. The adaptive squeezed MSA applied on multidimensional features enables JDAT to focus on diverse EEG information, including space, frequency, and time. Under the joint attention, JDAT is sensitive to the complicated brain activities, such as signal activation, phase-intensity couplings, and resonance. Moreover, its gradually compressed structure contains no recurrent or parallel modules, greatly reducing the memory and complexity, and accelerating the inference process. The proposed JDAT is evaluated on DEAP, DREAMER, and SEED datasets, and experimental results show that it outperforms state-of-the-art methods along with stronger flexibility.</div>


2021 ◽  
Author(s):  
Zeyu Wang ◽  
Ziqun Zhou ◽  
Haibin Shen ◽  
Qi Xu ◽  
Kejie Huang

<div>Electroencephalography (EEG) emotion recognition, an important task in Human-Computer Interaction (HCI), has made a great breakthrough with the help of deep learning algorithms. Although the application of attention mechanism on conventional models has improved its performance, most previous research rarely focused on multiplex EEG features jointly, lacking a compact model with unified attention modules. This study proposes Joint-Dimension-Aware Transformer (JDAT), a robust model based on squeezed Multi-head Self-Attention (MSA) mechanism for EEG emotion recognition. The adaptive squeezed MSA applied on multidimensional features enables JDAT to focus on diverse EEG information, including space, frequency, and time. Under the joint attention, JDAT is sensitive to the complicated brain activities, such as signal activation, phase-intensity couplings, and resonance. Moreover, its gradually compressed structure contains no recurrent or parallel modules, greatly reducing the memory and complexity, and accelerating the inference process. The proposed JDAT is evaluated on DEAP, DREAMER, and SEED datasets, and experimental results show that it outperforms state-of-the-art methods along with stronger flexibility.</div>


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1729
Author(s):  
Sara Falvo ◽  
Luigi Rosati ◽  
Maria Maddalena Di Fiore ◽  
Federica Di Giacomo Russo ◽  
Gabriella Chieffi Baccari ◽  
...  

The quail Coturnix coturnix is a seasonal breeding species, with the annual reproductive cycle of its testes comprising an activation phase and a regression phase. Our previous results have proven that the testicular levels of both 17β-estradiol (E2) and androgens are higher during the reproductive period compared to the non-reproductive period, which led us to hypothesize that estrogens and androgens may act synergistically to initiate spermatogenesis. The present study was, therefore, aimed to investigate the estrogen responsive system in quail testis in relation to the reproduction seasonality, with a focus on the molecular pathways elicited in both active and regressive quail testes. Western blotting and immunohistochemistry analysis revealed that the expression of ERα, which is the predominant form of estrogen receptors in quail testis, was correlated with E2 concentration, suggesting that increased levels of E2-induced ERα could play a key role in the resumption of spermatogenesis during the reproductive period, when both PCNA and SYCP3, the mitotic and meiotic markers, respectively, were also increased. In the reproductive period we also found the activation of the ERK1/2 and Akt-1 kinase pathways and an increase in second messengers cAMP and cGMP levels. In the non-reproductive phase, when the E2/ERα levels were low, the inactivation of ERK1/2 and Akt-1 pathways favored apoptotic events due to an increase in the levels of Bax and cytochrome C, with a consequent regression of the gonad.


2020 ◽  
Vol 245 (13) ◽  
pp. 1087-1095 ◽  
Author(s):  
Xincheng Yao ◽  
Tae-Hoon Kim

Quantitative assessment of physiological condition of retinal photoreceptors is desirable for better detection and treatment evaluation of eye diseases that can cause photoreceptor dysfunctions. Functional intrinsic optical signal (IOS) imaging, also termed as optoretinography (ORG) or optophysiology, has been proposed as a high-resolution method for objective assessment of retinal physiology. Fast IOS in retinal photoreceptors shows a time course earlier than that of electroretinography a-wave, promising an objective marker for noninvasive ORG of early phototransduction process in retinal photoreceptors. In this article, recent observations of fast photoreceptor-IOS in animal and human retinas are summarized, and the correlation of fast photoreceptor-IOS to five steps of phototransduction process is discussed. Transient outer segment conformational change, due to inter-disc space shrinkage correlated with activation phase of phototransduction, has been disclosed as a primary source of the fast photoreceptor-IOS. Impact statement As the center of phototransduction, retinal photoreceptors are responsible for capturing and converting photon energy to bioelectric signals for following visual information processing in the retina. This article summarizes experimental observation and discusses biophysical mechanism of fast photoreceptor-intrinsic optical signal (IOS) correlated with early phase of phototransduction. Quantitative imaging of fast photoreceptor-IOS may provide objective optoretinography to advance the study and diagnosis of age-related macular degeneration, retinitis pigmentosa, diabetic retinopathy, and other eye diseases that can cause photoreceptor dysfunctions.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Steffen Held ◽  
Tobias Siebert ◽  
Lars Donath

Abstract The consideration of the temporal and electromyographic (EMG) characteristics of stretch-shortening cycles (SSC) are crucial for the conceptualization of discipline-specific testing and training. Since leg muscles are first stretched (eccentric) and then contracted (concentric) during rowing, it can be assumed that the entire muscle tendon complex performs a SSC. Thus, it should be elucidated whether the rowing cycle can be attributed to either a slow or fast SSC. Therefore, EMG of the vastus medialis and gastrocnemius were captured (n = 10, 22.8 ± 3.1 years, 190 ± 6 cm, 82.1 ± 9.8 kg) during (single scull) rowing and subsequently compared to typical slow (countermovement jump, CMJ) and fast (drop jump, DJ) SSCs. The elapsed time between the EMG onset and the start of the eccentric phase was monitored. The pre-activation phase (PRE, before the start of the eccentric phase) and the reflex-induced activation phase (RIA 30–120 ms after the start of the eccentric phase) have been classified. Notable muscular activity was observed during DJ before the start of the eccentric phase (PRE) as well as during RIA. In contrast, neither CMJ nor rowing revealed any EMG-activity in these two phases. Interestingly, CMJ and race-specific rowing showed an EMG-onset during the eccentric phase. We conclude that rowing is more attributable to a slow SSC and implies that fast SSC does not reflect discipline specific muscle action and could hamper rowing-performance-enhancement.


2020 ◽  
Vol 140 (1) ◽  
pp. 5-12 ◽  
Author(s):  
Mitchell Brigell ◽  
Brett G. Jeffrey ◽  
Omar A. Mahroo ◽  
Radouil Tzekov

AbstractThe International Society for the Clinical Electrophysiology of Vision (ISCEV) standard for full-field electroretinography (ERG) describes a minimum set of tests, but encourages the use of additional protocols for clinical ERG testing. This extended protocol describes recording methods and derivations that will allow analysis of rod-driven components of the dark-adapted (DA) strong flash ERG a-wave, more closely related to rod phototransduction than ISCEV standard DA ERGs. The method involves recording ERGs to a flash strength equivalent to 30 cd s m2 under conditions of dark adaptation and additionally to the same stimulus following light adaptation (LA) and in the presence of a standard photopic background luminance of 30 cd m−2. The isolated rod-driven ERG a-wave is derived by subtracting the LA response from the DA ERG. The method is likely to be of value in the characterization of retinal disorders which affect rod quantal catch, diseases that affect the dynamics of any component of the activation phase of rod phototransduction, or those affecting total numbers of rod photoreceptors.


2019 ◽  
Vol 10 (02) ◽  
pp. 250-255
Author(s):  
Ambrish S. Dharmadhikari ◽  
Suyog Vijay Jaiswal ◽  
Avinash L. Tandle ◽  
Deoraj Sinha ◽  
Nandini Jog

ABSTRACTBackground: Depression, despite being the most common of mental illness lacks any quantifiable and absolute biomarker. Frontal alpha asymmetry (FAA) is proposed as biomarker of depression both in resting and activated state. Yet, the location of extraction of alpha, clinical utility as well as validity of FAA is uncertain. With aim of obtaining clarity on this confusion we conducted this study. Methodology: Electroencephalographic frontal alpha power was calculated in patients of depression (n = 24) and compared with healthy controls (n = 17) for the assessment of FAA. Both groups were studied for resting phase and activation phase changes in FAA. For activation phase, auditory stimuli in the form of Indian classical music were used. Results: Frontal alpha power was measured across FP1, FP2, F3, F4, F7, and F8. Mean powers were compared in resting (before), activated (during) and postactivated resting stage (after). FAA was statistically significant in F7–F8 pair of electrodes and on F7 electrode when compared between cases and controls. Conclusion: Quest for biomarker for depression churned out FAA as frontrunner. Despite of vast amount of research on it, practical utility eludes us. We need to revisit our approach from conventional search of the diagnostic biomarker; as FAA might reflect component of depression but not totally disorder. In our opinion, we are not yet ready for it and have a road ahead to travel.


2018 ◽  
Vol 196 ◽  
pp. 197-204 ◽  
Author(s):  
Xing Zheng ◽  
Zhenghua Deng ◽  
Jian G. Qin ◽  
Aimin Wang ◽  
Zhifeng Gu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document