Feedback control of vortex shedding from a circular cylinder by cross-flow cylinder oscillations

1996 ◽  
Vol 21 (1) ◽  
pp. 49-56 ◽  
Author(s):  
H. M. Warui ◽  
N. Fujisawa
Author(s):  
Antoine Placzek ◽  
Jean-Franc¸ois Sigrist ◽  
Aziz Hamdouni

The numerical simulation of the flow past a circular cylinder forced to oscillate transversely to the incident stream is presented here for a fixed Reynolds number equal to 100. The 2D Navier-Stokes equations are solved with a classical Finite Volume Method with an industrial CFD code which has been coupled with a user subroutine to obtain an explicit staggered procedure providing the cylinder displacement. A preliminary work is conducted in order to check the computation of the wake characteristics for Reynolds numbers smaller than 150. The Strouhal frequency fS, the lift and drag coefficients CL and CD are thus controlled among other parameters. The simulations are then performed with forced oscillations f0 for different frequency rations F = f0/fS in [0.50–1.50] and an amplitude A varying between 0.25 and 1.25. The wake characteristics are analysed using the time series of the fluctuating aerodynamic coefficients and their FFT. The frequency content is then linked to the shape of the phase portrait and to the vortex shedding mode. By choosing interesting couples (A,F), different vortex shedding modes have been observed, which are similar to those of the Williamson-Roshko map.


2007 ◽  
Vol 2007 (0) ◽  
pp. _814-1_-_814-4_
Author(s):  
Hiromitsu HAMAKAWA ◽  
Tomohiro KUDO ◽  
Eiichi NISHIDA ◽  
Tohru FUKANO

Author(s):  
Hamakawa Hiromitsu ◽  
Adachi Takaaki ◽  
Asakura Kenta ◽  
Hosokai Kazuki ◽  
Nishida Eiichi ◽  
...  

Author(s):  
Hajime Nakamura

Omnidirectional reductions in drag and fluctuating forces can be achieved for a circular cylinder subjected to cross-flow by attaching cylindrical rings along its span at an interval of several diameters. In this work, the effects of ring configuration, the diameter D, spanwise width W, and spanwise pitch P, on the vortex shedding suppression was investigated. As a result, it was found that the periodicity in the pressure fluctuation on the sides of the cylinder disappeared for Red ≥ 20000 at ring configurations of D/d = 1.3, W/d = 1 and P/d ≈ 3. At this configuration, the fluctuating lift force reduced markedly to about 1/30 of a 2D cylinder due to the suppression of the periodic shedding together with the weakening of the spanwise correlation. The mechanism of this was explored through flow visualizations and PIV measurements, which was considered as follows: A spanwise pressure gradient originated from a stepwise change in the diameter induces a spanwise flow, which brings the corner vortex to the side of the ring. This promotes the turbulent transition in the shear layer separated from the ring for Red ≥ 20000. As a result, the wake behind the ring markedly shrinks, which induces a pair of large transverse circulations just behind the ring edges. Consequently, two-dimensional spanwise vortices are obstructed to form, resulting in the suppression of the periodicity in the vortex shedding.


2003 ◽  
Vol 125 (1) ◽  
pp. 97-108 ◽  
Author(s):  
Tsutomu Kawamura ◽  
Toshitsugu Nakao ◽  
Masanori Takahashi ◽  
Masaaki Hayashi ◽  
Kouichi Murayama ◽  
...  

Synchronized vibrations of a circular cylinder in a water cross flow at supercritical Reynolds numbers were measured. Turbulence intensities were varied to investigate the effect of the Strouhal number on the synchronization range. Self-excited vibration in the drag direction due to symmetrical vortex shedding began only when the Strouhal number was about 0.29, at a reduced velocity of 1.1. The reduced velocities at the beginning of lock-in vibrations caused by Karman vortex shedding decreased from 1.5 to 1.1 in the drag direction and from 2.7 to 2.2 in the lift direction, as the Strouhal number increased from 0.29 to 0.48.


2014 ◽  
Vol 136 (5) ◽  
Author(s):  
Dipankar Chatterjee ◽  
Chiranjit Sinha

The vortex shedding (VS) behind stationary bluff obstacles in cross-flow can be initiated by imposing thermal instability at subcritical Reynolds numbers (Re). We demonstrate here that additional thermal instability is required to be imparted in the form of heating for destabilizing the flow around a rotating bluff obstacle. A two-dimensional numerical simulation is performed in this regard to investigate the influences of cross buoyancy on the VS process behind a heated and rotating circular cylinder at subcritical Re. The flow is considered in an unbounded medium. The range of Re is chosen to be 5–45 with a dimensionless rotational speed (Ω) ranging between 0 and 4. At this subcritical range of Reynolds number the flow and thermal fields are found to be steady without the superimposed thermal buoyancy (i.e., for pure forced flow). However, as the buoyancy parameter (Richardson number, Ri) increases flow becomes unstable and subsequently, at some critical value of Ri, periodic VS is observed to characterize the flow and thermal fields. The rotation of the cylinder is found to have a stabilizing effect and as Ω increases more heating is observed to be required to destabilize the flow.


Sign in / Sign up

Export Citation Format

Share Document