Century-scale variability in a randomly forced, two-dimensional thermohaline ocean circulation model

1993 ◽  
Vol 8 (3) ◽  
pp. 103-116 ◽  
Author(s):  
L A Mysak ◽  
T F Stocker ◽  
F Huang
2019 ◽  
Vol 871 ◽  
pp. 755-774
Author(s):  
Arjun Sharma ◽  
Irina I. Rypina ◽  
Ruth Musgrave ◽  
George Haller

Inverting an evolving diffusive scalar field to reconstruct the underlying velocity field is an underdetermined problem. Here we show, however, that for two-dimensional incompressible flows, this inverse problem can still be uniquely solved if high-resolution tracer measurements, as well as velocity measurements along a curve transverse to the instantaneous scalar contours, are available. Such measurements enable solving a system of partial differential equations for the velocity components by the method of characteristics. If the value of the scalar diffusivity is known, then knowledge of just one velocity component along a transverse initial curve is sufficient. These conclusions extend to the shallow-water equations and to flows with spatially dependent diffusivity. We illustrate our results on velocity reconstruction from tracer fields for planar Navier–Stokes flows and for a barotropic ocean circulation model. We also discuss the use of the proposed velocity reconstruction in oceanographic applications to extend localized velocity measurements to larger spatial domains with the help of remotely sensed scalar fields.


2006 ◽  
Vol 56 (5-6) ◽  
pp. 543-567 ◽  
Author(s):  
Barnier Bernard ◽  
Gurvan Madec ◽  
Thierry Penduff ◽  
Jean-Marc Molines ◽  
Anne-Marie Treguier ◽  
...  

2020 ◽  
Vol 13 (11) ◽  
pp. 5465-5483
Author(s):  
Clément Bricaud ◽  
Julien Le Sommer ◽  
Gurvan Madec ◽  
Christophe Calone ◽  
Julie Deshayes ◽  
...  

Abstract. Ocean biogeochemical models are key tools for both scientific and operational applications. Nevertheless the cost of these models is often expensive because of the large number of biogeochemical tracers. This has motivated the development of multi-grid approaches where ocean dynamics and tracer transport are computed on grids of different spatial resolution. However, existing multi-grid approaches to tracer transport in ocean modelling do not allow the computation of ocean dynamics and tracer transport simultaneously. This paper describes a new multi-grid approach developed for accelerating the computation of passive tracer transport in the Nucleus for European Modelling of the Ocean (NEMO) ocean circulation model. In practice, passive tracer transport is computed at runtime on a grid with coarser spatial resolution than the hydrodynamics, which reduces the CPU cost of computing the evolution of tracers. We describe the multi-grid algorithm, its practical implementation in the NEMO ocean model, and discuss its performance on the basis of a series of sensitivity experiments with global ocean model configurations. Our experiments confirm that the spatial resolution of hydrodynamical fields can be coarsened by a factor of 3 in both horizontal directions without significantly affecting the resolved passive tracer fields. Overall, the proposed algorithm yields a reduction by a factor of 7 of the overhead associated with running a full biogeochemical model like PISCES (with 24 passive tracers). Propositions for further reducing this cost without affecting the resolved solution are discussed.


2013 ◽  
Vol 165 ◽  
pp. 2041-2046 ◽  
Author(s):  
Young-Gyu Park ◽  
Sang-Wook Yeh ◽  
Jin Hwan Hwang ◽  
Taerim Kim

Sign in / Sign up

Export Citation Format

Share Document