grid algorithm
Recently Published Documents


TOTAL DOCUMENTS

195
(FIVE YEARS 39)

H-INDEX

22
(FIVE YEARS 1)

Author(s):  
Н.М. Чернышов ◽  
О.В. Авсеева

Работа посвящена реализации алгоритма процедурной генерации нерегулярной четырехугольной сетки, позволяющего рассчитывать сетку для большой области в реальном времени. При генерации используются кубическая система координат, в которой строится регулярная треугольная сетка для каждой ячейки шестиугольной сетки, процедура релаксации четырехугольной сетки. This work is devoted to the implementation of an algorithm for procedural generation of an unstructured quadrangular grid, which allows to calculate the grid for a large area in real time. When building the grid, a cubic coordinate system, in which a structured triangular grid is built for each cell of a hexagonal grid, and a relaxation of the quadrangular grid algorithm are used.


Author(s):  
Xuqiong Luo ◽  
Na Yang ◽  
Qingshan Tong

In this paper, a singularly perturbed convection–diffusion equation is studied. At first, the original problem is transformed into a parameterized singularly perturbed Volterra integro-differential equation by using an integral transform. Then, a second-order finite difference method on an arbitrary mesh is given. The stability and local truncation error estimates of the discrete schemes are analyzed. Based on the mesh equidistribution principle and local truncation error estimation, an adaptive grid algorithm is given. In addition, in order to calculate the parameters of the transformation equation, a nonlinear unconstrained optimization problem is constructed. Numerical experiments are given to illustrate the effectiveness of our presented adaptive grid algorithm.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Karl K. Sabelfeld ◽  
Dmitry Smirnov ◽  
Ivan Dimov ◽  
Venelin Todorov

Abstract In this paper we develop stochastic simulation methods for solving large systems of linear equations, and focus on two issues: (1) construction of global random walk algorithms (GRW), in particular, for solving systems of elliptic equations on a grid, and (2) development of local stochastic algorithms based on transforms to balanced transition matrix. The GRW method calculates the solution in any desired family of prescribed points of the gird in contrast to the classical stochastic differential equation based Feynman–Kac formula. The use in local random walk methods of balanced transition matrices considerably decreases the variance of the random estimators and hence decreases the computational cost in comparison with the conventional random walk on grids algorithms.


Author(s):  
Seyed Mojtaba Abbasi ◽  
Mehdi Nafar ◽  
Mohsen Simab

In this paper, using a neural controller and a genetic optimization algorithm to control the voltage as well as, control the frequency of the grid along with the management of the reactive power of the micro-grid to control the output power during islanding using Simultaneous bilateral power converters with voltage/frequency droop strategy and optimization of PI coefficients of parallel power converters by genetic-neural micro-grid algorithm to suppress AC side-current flow that increases stability and improvement of conditions frequency and voltage are discussed. Given the performance of the micro-grid in two simulation scenarios, namely transition from on-grid to off-grid, the occurrence of a step change in load in island mode as well as return to working mode is connected. The ability to detect the robust performance and proper performance of two-level neural controller. The controller performance time was also very good, indicating the appropriate features of the method used to design the controller, namely two-level neural, genetics. The main advantage of this method is its simplicity of design. The method used is also efficient and resistant to changes in the system, which results from the simulations.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Karl K. Sabelfeld ◽  
Dmitrii Smirnov

Abstract We suggest in this paper a global random walk on grid (GRWG) method for solving second order elliptic equations. The equation may have constant or variable coefficients. The GRWS method calculates the solution in any desired family of m prescribed points of the gird in contrast to the classical stochastic differential equation based Feynman–Kac formula, and the conventional random walk on spheres (RWS) algorithm as well. The method uses only N trajectories instead of mN trajectories in the RWS algorithm and the Feynman–Kac formula. The idea is based on the symmetry property of the Green function and a double randomization approach.


Author(s):  
Emily M. Riley Dellaripa ◽  
Aaron Funk ◽  
Courtney Schumacher ◽  
Hedanqiu Bai ◽  
Thomas Spangehl

AbstractComparisons of precipitation between general circulation models (GCMs) and observations are often confounded by a mismatch between model output and instrument measurements, including variable type and temporal and spatial resolution. To mitigate these differences, the radar-simulator Quickbeam within the Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulator Package (COSP) simulates reflectivity from model variables at the sub-grid scale. This work adapts Quickbeam to the dual-frequency Precipitation Radar (DPR) onboard the Global Precipitation Measurement (GPM) satellite. The longer wavelength of the DPR is used to evaluate moderate-to-heavy precipitation in GCMs, which is missed when Quickbeam is used as a cloud radar simulator. Latitudinal and land/ocean comparisons are made between COSP output from the Community Atmospheric Model version 5 (CAM5) and DPR data. Additionally, this work improves the COSP sub-grid algorithm by applying a more realistic, non-deterministic approach to assigning GCM grid box convective cloud cover when convective cloud is not provided as a model output. Instead of assuming a static 5% convective cloud coverage, DPR convective precipitation coverage is used as a proxy for convective cloud coverage. For example, DPR observations show that convective rain typically only covers about 1% of a 2° grid box, but that the median convective rain area increases to over 10% in heavy rain cases. In our CAM5 tests, the updated sub-grid algorithm improved the comparison between reflectivity distributions when the convective cloud cover is provided versus the default 5% convective cloud cover assumption.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3084
Author(s):  
Meiying Liu ◽  
Xin Wei ◽  
Desheng Wen ◽  
Hu Wang

This paper describes the multilayer voting algorithm, a novel autonomous star identification method for spacecraft attitude determination. The proposed algorithm includes two processes: an initial match process and a verification process. In the initial match process, a triangle voting scheme is used to acquire candidates of the detected stars, in which the triangle unit is adopted as the basic voting unit. During the identification process, feature extraction is implemented, and each triangle unit is described by its singular values. Then the singular values are used to search for candidates of the imaged triangle units, which further improve the efficiency and robustness of the algorithm. After the initial match step, a verification method is applied to eliminate incorrect candidates from the initial results and then outputting the final match results of the imaged stars. Experiments show that our algorithm has more robustness to position noise, magnitude noise, and false stars than the other three algorithms, the identification speed of our algorithm is largely faster than the geometric voting algorithm and optimized grid algorithm. However, it takes more memory, and SVD also seems faster.


Sign in / Sign up

Export Citation Format

Share Document