Kinetic microphotometric evaluation of in situ hybridization for mRNA of slow myosin heavy chain in type I and C fibres of rabbit muscle

1994 ◽  
Vol 102 (2) ◽  
pp. 105-112 ◽  
Author(s):  
T. Leeuw ◽  
D. Pette
2001 ◽  
Vol 204 (12) ◽  
pp. 2097-2101 ◽  
Author(s):  
Pierre-Yves Rescan ◽  
Bertrand Collet ◽  
Cecile Ralliere ◽  
Chantal Cauty ◽  
Jean-Marie Delalande ◽  
...  

SUMMARY The axial muscle of most teleost species consists of a deep bulk of fast-contracting white fibres and a superficial strip of slow-contracting red fibres. To investigate the embryological development of fast and slow muscle in trout embryos, we carried out single and double in situ hybridisation with fast and slow myosin heavy chain (MyHC)-isoform-specific riboprobes. This showed that the slow-MyHC-positive cells originate in a region of the somite close to the notochord. As the somite matures in a rostrocaudal progression, the slow-MyHC-positive cells appear to migrate radially away from the notochord to the lateral surface of the myotome, where they form the superficial strip of slow muscle. Surprisingly, the expression pattern of the fast MyHC showed that the differentiation of fast muscle commences in the medial domain of the somite before the differentiation and migration of the slow muscle precursors. Later, as the differentiation of fast muscle progressively spreads from the inside to the outside of the myotome, slow-MyHC-expressing cells become visible medially. Our observations that the initial differentiation of fast muscle takes place in proximity to axial structures and occurs before the differentiation and migration of slow muscle progenitors are not in accord with the pattern of muscle formation in teleosts previously described in the zebrafish Danio rerio, which is often used as the model organism in fishes.


Neurology ◽  
1985 ◽  
Vol 35 (9) ◽  
pp. 1360-1360 ◽  
Author(s):  
D. Biral ◽  
E. Damiani ◽  
A. Margreth ◽  
E. Scarpini ◽  
G. Scarlato

1981 ◽  
Vol 195 (1) ◽  
pp. 317-327 ◽  
Author(s):  
O A Young ◽  
C L Davey

A number of single fibres were isolated by dissection of four bovine masseter (ma) muscles, three rectus abdominis (ra) muscles and eight sternomandibularis (sm) muscles. By histochemical criteria these muscles contain respectively, solely slow fibres (often called type I), predominantly fast fibres (type II), and a mixture of fast and slow. The fibres were analysed by conventional sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and the gels stained with Coomassie Blue. Irrespective of the muscle, every fibre could be classed into one of two broad groups based on the mobility of proteins in the range 135000-170000 daltons. When zones containing myosin heavy chain were cut from the single-fibre gel tracks and ‘mapped’ [Cleveland, Fischer, Kirschner & Laemmli (1977) J. Biol. Chem. 252, 1102-1106] with Staphylococcus proteinase, it was found that one group always contained fast myosin heavy chain, whereas the second group always contained the slow form. Moreover, a relatively fast-migrating alpha-tropomyosin was associated with the fast myosin group and a slow-migrating form with the slow myosin group. All fibres also contained beta-tropomyosin; the coexistence of alpha- and beta-tropomyosin is at variance with evidence that alpha-tropomyosin is restricted to fast fibres [Dhoot & Perry (1979) Nature (London) 278, 714-718]. Fast fibres containing the expected fast light chains and troponins I and C fast were identified in the three ra muscles, but in only four sm muscles. In three other sm muscles, all the fast fibres contained two troponins I and an additional myosin light chain that was more typical of myosin light chain 1 slow. The remaining sm muscle contained a fast fibre type that was similar to the first type, except that its myosin light chain 1 was more typical of the slow polymorph. Troponin T was bimorphic in all fast fibres from a ra muscles and in at least some fast fibres from one sm muscle. Peptide ‘mapping’ revealed two forms of fast myosin heavy chain distributed among fast fibres. Each form was associated with certain other proteins. Slow myosin heavy chain was unvarying in three slow fibre types identified. Troponin I polymorphs were the principal indicator of slow fibre types. The myofibrillar polymorphs identified presumably contribute to contraction properties, but beyond cud chewing involving ma muscle, nothing is known of the conditions that gave rise to the variable fibre composites in sm and ra muscles.


1991 ◽  
Vol 143 (1) ◽  
pp. 58-67 ◽  
Author(s):  
Marsha E. Pomeroy ◽  
Jeanne Bentley Lawrence ◽  
Robert H. Singer ◽  
Susan Billings-Gagliardi

2014 ◽  
Vol 446 (4) ◽  
pp. 1231-1236 ◽  
Author(s):  
Jie Wang ◽  
Ting Chen ◽  
Fu Feng ◽  
Huan Wei ◽  
Weijun Pang ◽  
...  

Neurology ◽  
2005 ◽  
Vol 64 (3) ◽  
pp. 580-581 ◽  
Author(s):  
A. Oldfors ◽  
H. Tajsharghi ◽  
L. E. Thornell ◽  
B. F. Meyer

Sign in / Sign up

Export Citation Format

Share Document