Red and white muscle development in the trout (Oncorhynchus mykiss) as shown by in situ hybridisation of fast and slow myosin heavy chain transcripts

2001 ◽  
Vol 204 (12) ◽  
pp. 2097-2101 ◽  
Author(s):  
Pierre-Yves Rescan ◽  
Bertrand Collet ◽  
Cecile Ralliere ◽  
Chantal Cauty ◽  
Jean-Marie Delalande ◽  
...  

SUMMARY The axial muscle of most teleost species consists of a deep bulk of fast-contracting white fibres and a superficial strip of slow-contracting red fibres. To investigate the embryological development of fast and slow muscle in trout embryos, we carried out single and double in situ hybridisation with fast and slow myosin heavy chain (MyHC)-isoform-specific riboprobes. This showed that the slow-MyHC-positive cells originate in a region of the somite close to the notochord. As the somite matures in a rostrocaudal progression, the slow-MyHC-positive cells appear to migrate radially away from the notochord to the lateral surface of the myotome, where they form the superficial strip of slow muscle. Surprisingly, the expression pattern of the fast MyHC showed that the differentiation of fast muscle commences in the medial domain of the somite before the differentiation and migration of the slow muscle precursors. Later, as the differentiation of fast muscle progressively spreads from the inside to the outside of the myotome, slow-MyHC-expressing cells become visible medially. Our observations that the initial differentiation of fast muscle takes place in proximity to axial structures and occurs before the differentiation and migration of slow muscle progenitors are not in accord with the pattern of muscle formation in teleosts previously described in the zebrafish Danio rerio, which is often used as the model organism in fishes.

1993 ◽  
Vol 121 (4) ◽  
pp. 795-810 ◽  
Author(s):  
M Cho ◽  
S G Webster ◽  
H M Blau

Vertebrate muscles are composed of an array of diverse fast and slow fiber types with different contractile properties. Differences among fibers in fast and slow MyHC expression could be due to extrinsic factors that act on the differentiated myofibers. Alternatively, the mononucleate myoblasts that fuse to form multinucleated muscle fibers could differ intrinsically due to lineage. To distinguish between these possibilities, we determined whether the changes in proportion of slow fibers were attributable to inherent differences in myoblasts. The proportion of fibers expressing slow myosin heavy chain (MyHC) was found to change markedly with time during embryonic and fetal human limb development. During the first trimester, a maximum of 75% of fibers expressed slow MyHC. Thereafter, new fibers formed which did not express this MyHC, so that the proportion of fibers expressing slow MyHC dropped to approximately 3% of the total by midgestation. Several weeks later, a subset of the new fibers began to express slow MyHC and from week 30 of gestation through adulthood, approximately 50% of fibers were slow. However, each myoblast clone (n = 2,119) derived from muscle tissues at six stages of human development (weeks 7, 9, 16, and 22 of gestation, 2 mo after birth and adult) expressed slow MyHC upon differentiation. We conclude from these results that the control of slow MyHC expression in vivo during muscle fiber formation in embryonic development is largely extrinsic to the myoblast. By contrast, human myoblast clones from the same samples differed in their expression of embryonic and neonatal MyHCs, in agreement with studies in other species, and this difference was shown to be stably heritable. Even after 25 population doublings in tissue culture, embryonic stage myoblasts did not give rise to myoblasts capable of expressing MyHCs typical of neonatal stages, indicating that stage-specific differences are not under the control of a division dependent mechanism, or intrinsic "clock." Taken together, these results suggest that, unlike embryonic and neonatal MyHCs, the expression of slow MyHC in vivo at different developmental stages during gestation is not the result of commitment to a distinct myoblast lineage, but is largely determined by the environment.


1992 ◽  
Vol 282 (1) ◽  
pp. 237-242 ◽  
Author(s):  
A Jakubiec-Puka ◽  
C Catani ◽  
U Carraro

The myosin heavy-chain (MHC) isoform pattern was studied by biochemical methods in the slow-twitch (soleus) and fast-twitch (gastrocnemius) muscles of adult rats during atrophy after tenotomy and recovery after tendon regeneration. The tenotomized slow muscle atrophied more than the tenotomized fast muscle. During the 12 days after tenotomy the total MHC content decreased by about 85% in the slow muscle, and only by about 35% in the fast muscle. In the slow muscle the ratio of MHC-1 to MHC-2A(2S) remained almost unchanged, showing that similar diminution of both isoforms occurs. In the fast muscle the MHC-2A/MHC-2B ratio decreased, showing the loss of MHC-2A mainly. After tendon regeneration, the slow muscle recovered earlier than the fast muscle. Full recovery of the muscles was not observed until up to 4 months later. The embryonic MHC, which seems to be expressed in denervated adult muscle fibres, was not detected by immunoblotting in the tenotomized muscles during either atrophy or recovery after tendon regeneration. The influence of tenotomy and denervation on expression of the MHC isoforms is compared. The results show that: (a) MHC-1 and MHC-2A(2S) are very sensitive to tenotomy, whereas MHC-2B is much less sensitive; (b) expression of the embryonic MHC in adult muscle seems to be inhibited by the intact neuromuscular junction.


1996 ◽  
Vol 106 (5) ◽  
pp. 473-479 ◽  
Author(s):  
Erika Snoj-Cvetko ◽  
Janez Sketelj ◽  
Igor Dolenc ◽  
Slavko Obreza ◽  
Chantal Janmot ◽  
...  

Neurology ◽  
1985 ◽  
Vol 35 (9) ◽  
pp. 1360-1360 ◽  
Author(s):  
D. Biral ◽  
E. Damiani ◽  
A. Margreth ◽  
E. Scarpini ◽  
G. Scarlato

2014 ◽  
Vol 446 (4) ◽  
pp. 1231-1236 ◽  
Author(s):  
Jie Wang ◽  
Ting Chen ◽  
Fu Feng ◽  
Huan Wei ◽  
Weijun Pang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document