slow twitch muscle
Recently Published Documents


TOTAL DOCUMENTS

188
(FIVE YEARS 16)

H-INDEX

36
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Ezra Lencer ◽  
Rytis Prekeris ◽  
Kristin Artinger

The immunoglobin superfamily members cdon and boc are transmembrane proteins implicated in regulating hedgehog signaling during vertebrate development. Recent work showing roles for these genes in axon guidance and neural crest cell migration further suggest that cdon/boc may play additional functions in regulating directed cell movements during development. Here we use novel and existing mutants to investigate a role for cdon and boc in zebrafish neural crest cell migration. We find that single cdon or boc mutant embryos exhibit normal neural crest phenotypes, but that neural crest migration is strikingly disrupted in double cdon/boc mutant embryos. We further show that this neural crest migration phenotype is associated with defects to the differentiation of slow-twitch muscle cells, and that this slow-twitch muscle phenotype is a consequence of reduced hedgehog signaling in mutant fish. While neural crest migratory ability is not affected in double mutant embryos, neural crest directionality is severely affected. These data suggest that neural crest migration defects are likely to be secondary to defects in slow-twitch muscle differentiation. Combined, our data add to a growing literature showing that cdon and boc act synergistically to promote hedgehog signaling during vertebrate development, and provide a foundation for using zebrafish to further study the function of these hedgehog receptor paralogs.


Nutrition ◽  
2021 ◽  
pp. 111412
Author(s):  
Xiangni Su ◽  
Jian Zhou ◽  
Wenchen Wang ◽  
Caocao Yin ◽  
Feng Wang

Author(s):  
Wanxue Wen ◽  
Xiaoling Chen ◽  
Zhiqing Huang ◽  
Daiwen Chen ◽  
Bing Yu ◽  
...  

Author(s):  
Bo Huang ◽  
Yiren Jiao ◽  
Yifan Zhu ◽  
Zuocheng Ning ◽  
Zijian Ye ◽  
...  

Muscle development requires myoblast differentiation and muscle fiber formation. Myod family inhibitor (Mdfi) inhibits myogenic regulatory factors in NIH3T3 cells, but how Mdfi regulates myoblast myogenic development is still unclear. In the present study, we constructed an Mdfi-overexpression (Mdfi-OE) C2C12 cell line by the CRISPR/Cas9 system and performed RNA-seq on Mdfi-OE and wild-type (WT) C2C12 cells. The RNA-seq results showed that the calcium signaling pathway was the most significant. We also established the regulatory networks of Mdfi-OE on C2C12 cell differentiation and muscle fiber type transformation and identified hub genes. Further, both RNA-seq and experimental verification demonstrated that Mdfi promoted C2C12 cell differentiation by upregulating the expression of Myod, Myog, and Myosin. We also found that the positive regulation of Mdfi on fast-to-slow-twitch muscle fiber transformation is mediated by Myod, Camk2b, and its downstream genes, such as Pgc1a, Pdk4, Cs, Cox4, Acadm, Acox1, Cycs, and Atp5a1. In conclusion, our results demonstrated that Mdfi promotes C2C12 cell differentiation and positively modulates fast-to-slow-twitch muscle fiber transformation. These findings further our understanding of the regulatory mechanisms of Mdfi in myogenic development and muscle fiber type transformation. Our results suggest potential therapeutic targets for muscle- and metabolic-related diseases.


Author(s):  
Dirk Pette

An inspiring scientific cooperation has come to an end, when Gerta Vrbová, an internationally renowned researcher in the field of neuromuscular interactions, passed away on October 2, 2020. Comparative EMG studies had led Gerta to suggest that different contractile properties of fast- and slow-twitch muscle fibers relate to specific firing patterns of their motoneurones. In support of her hypothesis, long term stimulation of fast-twitch muscles with a stimulus pattern resembling that of slow motoneurones, were shown to induce a pronounced fast-to-slow shift in contractile properties. In our cooperation which started in 1970, and also in cooperation with others, Gerta's experiment proved to be an ideal model for the study of neurally controlled changes in phenotype characteristics at various levels of molecular and cellular organization, their time courses and ranges. It has become most important in basic research on the adaptive potential or plasticity of muscle.


Author(s):  
Dirk Pette

An inspiring scientific cooperation has come to an end, when Gerta Vrbová, an internationally renowned researcher in the field of neuromuscular interactions, passed away on October 2, 2020. Comparative EMG studies had led Gerta to suggest that different contractile properties of fast- and slow-twitch muscle fibers relate to specific firing patterns of their motoneurones. In support of her hypothesis, long term stimulation of fast-twitch muscles with a stimulus pattern resembling that of slow motoneurones, were shown to induce a pronounced fast-to-slow shift in contractile properties. In our cooperation which started in 1970, and also in cooperation with others, Gerta's experiment proved to be an ideal model for the study of neurally controlled changes in phenotype characteristics at various levels of molecular and cellular organization, their time courses and ranges. It has become most important in basic research on the adaptive potential or plasticity of muscle.


2021 ◽  
Vol 92 (1) ◽  
Author(s):  
Xiangsheng Lin ◽  
Mengting Yan ◽  
Wensai Yu ◽  
Yuchen Ma ◽  
Lifan Zhang ◽  
...  

Biomolecules ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1475
Author(s):  
Milan Holeček ◽  
Melita Vodeničarovová ◽  
Radana Fingrová

Beta-hydroxy-beta-methyl butyrate (HMB) is a unique product of leucine catabolism with positive effects on protein balance. We have examined the effects of HMB (200 mg/kg/day via osmotic pump for 7 days) on rats with diabetes induced by streptozotocin (STZ, 100 mg/kg intraperitoneally). STZ induced severe diabetes associated with muscle wasting, decreased ATP in the liver, and increased α-ketoglutarate in muscles. In plasma, liver, and muscles increased branched-chain amino acids (BCAAs; valine, isoleucine, and leucine) and decreased serine. The decreases in mass and protein content of muscles and increases in BCAA concentration were more pronounced in extensor digitorum longus (fast-twitch muscle) than in soleus muscle (slow-twitch muscle). HMB infusion to STZ-treated animals increased glycemia and serine in the liver, decreased BCAAs in plasma and muscles, and decreased ATP in the liver and muscles. The effects of HMB on the weight and protein content of tissues were nonsignificant. We concluded that fast-twitch muscles are more sensitive to STZ than slow-twitch muscles and that HMB administration to STZ-treated rats has dual effects. Adjustments of BCAA concentrations in plasma and muscles and serine in the liver can be considered beneficial, whereas the increased glycemia and decreased ATP concentrations in the liver and muscles are detrimental.


2020 ◽  
Vol 68 (34) ◽  
pp. 9276-9276
Author(s):  
Kelin Yang ◽  
Lina Wang ◽  
Gan Zhou ◽  
Xiajing Lin ◽  
Jianlong Peng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document