fiber type
Recently Published Documents


TOTAL DOCUMENTS

2529
(FIVE YEARS 482)

H-INDEX

109
(FIVE YEARS 11)

2022 ◽  
Vol 8 ◽  
Author(s):  
Guli Xu ◽  
Yexian Yuan ◽  
Pei Luo ◽  
Jinping Yang ◽  
Jingjing Zhou ◽  
...  

Endurance training and explosive strength training, with different contraction protein and energy metabolism adaptation in skeletal muscle, are both beneficial for physical function and quality of life. Our previous study found that chronic succinate feeding enhanced the endurance exercise of mice by inducing skeletal muscle fiber-type transformation. The purpose of this study is to investigate the effect of acute succinate administration on skeletal muscle explosive strength and its potential mechanism. Succinate was injected to mature mice to explore the acute effect of succinate on skeletal muscle explosive strength. And C2C12 cells were used to verify the short-term effect of succinate on oxidative phosphorylation. Then the cells interfered with succinate receptor 1 (SUCNR1) siRNA, and the SUCNR1-GKO mouse model was used for verifying the role of SUCNR1 in succinate-induced muscle metabolism and expression and explosive strength. The results showed that acute injection of succinate remarkably improved the explosive strength in mice and also decreased the ratio of nicotinamide adenine dinucleotide (NADH) to NAD+ and increased the mitochondrial complex enzyme activity and creatine kinase (CK) activity in skeletal muscle tissue. Similarly, treatment of C2C12 cells with succinate revealed that succinate significantly enhanced oxidative phosphorylation with increased adenosine triphosphate (ATP) content, CK, and the activities of mitochondrial complex I and complex II, but with decreased lactate content, reactive oxygen species (ROS) content, and NADH/NAD+ ratio. Moreover, the succinate's effects on oxidative phosphorylation were blocked in SUCNR1-KD cells and SUCNR1-KO mice. In addition, succinate-induced explosive strength was also abolished by SUCNR1 knockout. All the results indicate that acute succinate administration increases oxidative phosphorylation and skeletal muscle explosive strength in a SUCNR1-dependent manner.


2022 ◽  
Vol 12 ◽  
Author(s):  
Slobodan Sekulić ◽  
Branislava Jakovljević ◽  
Darinka Korovljev ◽  
Svetlana Simić ◽  
Ivan Čapo ◽  
...  

Polyhydramnios is a condition related to an excessive accumulation of amniotic fluid in the third trimester of pregnancy and it can be acute and chronic depending on the duration. Published data suggest that during muscle development, in the stage of late histochemical differentiation decreased mechanical loading cause decreased expression of myosin heavy chain (MHC) type 1 leading to slow-to-fast transition. In the case of chronic polyhydramnios, histochemical muscle differentiation could be affected as a consequence of permanent decreased physical loading. Most affected would be muscles which are the most active i.e., spine extensor muscles and muscles of legs. Long-lasting decreased mechanical loading on muscle should cause decreased expression of MHC type 1 leading to slow-to-fast transition, decreased number of muscle fiber type I especially in extensor muscles of spine and legs. Additionally, because MHC type 1 is present in all skeletal muscles it could lead to various degrees of hypotrophy depending on constituting a percentage of MHC type 1 in affected muscles. These changes in the case of preexisting muscle disorders have the potential to deteriorate the muscle condition additionally. Given these facts, idiopathic chronic polyhydramnios is a rare opportunity to study the influence of reduced physical loading on muscle development in the human fetus. Also, it could be a medical entity to examine the influence of micro- and hypogravity conditions on the development of the fetal muscular system during the last trimester of gestation.


Author(s):  
Bimol Roy ◽  
Shahid Mahmood ◽  
H. L. Bruce

Muscle fiber (MF) characteristics of Longissimus thoracis (LT) muscles from heifer (n = 11) and steer (n = 12) carcasses graded Canada AA (AA, normal, n = 4/sex) or dark-cutting (Canada B4) were examined and related to beef quality. Atypical (AB4, pH < 5.9, n = 4/sex) and typical (TB4, pH > 5.9, n = 3 and 4 for heifers and steers, respectively) dark-cutting carcasses were represented. Muscle fiber type proportions did not differ between AA, AB4 and TB4 muscles, although type I and IIB muscle fiber diameters were greater in TB4 than in AA LT. That AB4 muscle fiber proportions were not different from AA and TB4 muscles suggests that the increased MF diameter of TB4 muscle was due to water retained by muscle proteins at high ultimate pH, as evidenced by decreased cooking loss. Dark-cutting was therefore unrelated to muscle fiber proportions, and increased Type I and IIB diameters in dark cutting LT were likely driven by elevated intramuscular ultimate pH.


Agriculture ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 87
Author(s):  
Jingzheng Li ◽  
Jiaolong Li ◽  
Lin Zhang ◽  
Tong Xing ◽  
Yun Jiang ◽  
...  

Guanidinoacetic acid can improve pork quality. Previous studies have demonstrated that pork quality is closely linked to the muscle fiber type mediated by PPARGC1A. Therefore, this study aimed to evaluate the influence of dietary GAA supplementation on the skeletal muscle fiber type transformation. A total of 180 healthy Duroc × Landrace × Meishan cross castrated male pigs with a similar average weight (90 ± 1.5 kg) were randomly divided into three treatments with five replicates per treatment and 12 pigs per replicate, including a GAA-free basal diet and basal diet with 0.05% or 0.10% GAA for 15 days. Our results showed that 0.10% GAA supplementation increased the contents of Ca2+ in sarcoplasm (p < 0.05). Compared with the control group, both GAA supplementation groups upregulated the expression of Troponin I-ss (p < 0.05), and 0.10% GAA supplementation downregulated the expression of Troponin T3 (p < 0.05). GAA supplementation increased the expression of peroxisome proliferator activated receptor-γ coactivator-1alpha (PPARGC1A) (p < 0.05), and further upregulated the mitochondrial transcription factor A (TFAM), increased the level of membrane potential, and the activities of mitochondrial respiratory chain complex I, III (p < 0.05). The 0.10% GAA supplementation upregulated the protein expression of calcineurin catalytic subunit α (CnAα) and nuclear factor of activated T cells (NFATc1) (p < 0.05). Overall, dietary GAA supplementation promotes skeletal muscle fiber types transformation from fast-to-slow-twitch via increasing the PPARGC1A based mitochondrial function and the activation of CaN/NFAT pathway in finishing pigs.


2022 ◽  
Vol 5 (4) ◽  
pp. e202101342
Author(s):  
Elena Nikonova ◽  
Amartya Mukherjee ◽  
Ketaki Kamble ◽  
Christiane Barz ◽  
Upendra Nongthomba ◽  
...  

Protein isoform transitions confer muscle fibers with distinct properties and are regulated by differential transcription and alternative splicing. RNA-binding Fox protein 1 (Rbfox1) can affect both transcript levels and splicing, and is known to contribute to normal muscle development and physiology in vertebrates, although the detailed mechanisms remain obscure. In this study, we report that Rbfox1 contributes to the generation of adult muscle diversity in Drosophila. Rbfox1 is differentially expressed among muscle fiber types, and RNAi knockdown causes a hypercontraction phenotype that leads to behavioral and eclosion defects. Misregulation of fiber type–specific gene and splice isoform expression, notably loss of an indirect flight muscle–specific isoform of Troponin-I that is critical for regulating myosin activity, leads to structural defects. We further show that Rbfox1 directly binds the 3′-UTR of target transcripts, regulates the expression level of myogenic transcription factors myocyte enhancer factor 2 and Salm, and both modulates expression of and genetically interacts with the CELF family RNA-binding protein Bruno1 (Bru1). Rbfox1 and Bru1 co-regulate fiber type–specific alternative splicing of structural genes, indicating that regulatory interactions between FOX and CELF family RNA-binding proteins are conserved in fly muscle. Rbfox1 thus affects muscle development by regulating fiber type–specific splicing and expression dynamics of identity genes and structural proteins.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 404
Author(s):  
Sujing Zhao ◽  
Yiheng Bo

The mechanical performance of ultra-high performance concrete (UHPC) is a function of fiber distribution and orientation, which are affected by the processing of the fresh material. In this study, the influences of two casting positions (mid-cast and end-cast) on strength and fracture properties of UHPCs with different fiber types and fiber contents were investigated. The results show that mid-cast specimens have higher flexural strength and fracture properties than end-cast specimens, while the compressive strength is almost unaffected by casting position. Compared to specimens with straight fibers, the flexural strength of specimens with hooked-end fibers is more likely to be affected by casting position. The residual load-to-peak load ratio is independent of casting position but affected by fiber type and fiber content.


Author(s):  
Fakhreddin Yaghoob Nezhad ◽  
Annett Riermeier ◽  
Martin Schönfelder ◽  
Lore Becker ◽  
Martin Hrabĕ de Angelis ◽  
...  

AbstractThe Hippo signal transduction network regulates transcription through Yap/Taz-Tead1-4 in many tissues including skeletal muscle. Whilst transgenic mice have been generated for many Hippo genes, the resultant skeletal muscle phenotypes were not always characterized. Here, we aimed to phenotype the hindlimb muscles of Hippo gene-mutated Lats1−/−, Mst2−/−, Vgll3−/−, and Vgll4+/− mice. This analysis revealed that Lats1−/− mice have 11% more slow type I fibers than age and sex-matched wild-type controls. Moreover, the mRNA expression of slow Myh7 increased by 50%, and the concentration of type I myosin heavy chain is 80% higher in Lats1−/− mice than in age and sex-matched wild-type controls. Second, to find out whether exercise-related stimuli affect Lats1, we stimulated C2C12 myotubes with the hypertrophy agent clenbuterol or the energy stress agent AICAR. We found that both stimulated Lats1 expression by 1.2 and 1.3 fold respectively. Third, we re-analyzed published datasets and found that Lats1 mRNA in muscle is 63% higher in muscular dystrophy, increases by 17–77% after cardiotoxin-induced muscle injury, by 41–71% in muscles during overload-induced hypertrophy, and by 19–21% after endurance exercise when compared to respective controls. To conclude, Lats1 contributes to the regulation of muscle fiber type proportions, and its expression is regulated by physiological and pathological situations in skeletal muscle.


Author(s):  
Gaspard Fournier ◽  
Clara Bernard ◽  
Maxime Cievet‐Bonfils ◽  
Raymond Kenney ◽  
Maxime Pingon ◽  
...  

2022 ◽  
Author(s):  
Huawei Li ◽  
Xiaoling Chen ◽  
Zhiqing Huang ◽  
Daiwen Chen ◽  
Bing Yu ◽  
...  

Ellagic acid (EA) is a natural polyphenolic compound, which shows various effects, such as anti-inflammatory, antioxidant, and inhibition of platelet aggregation. In this study, we investigated the effect of EA...


2021 ◽  
Vol 3 (1) ◽  
pp. 59-82
Author(s):  
Marijana Djordjević ◽  
Miljana Djordjević ◽  
Dragana Šoronja-Simović ◽  
Ivana Nikolić ◽  
Zita Šereš

The evidenced relevance of dietary fibers (DF) as functional ingredients shifted the research focus towards their incorporation into gluten-free (GF) bread, aiming to attain the DF contents required for the manifestation of health benefits. Numerous studies addressing the inclusion of DF from diverse sources rendered useful information regarding the role of DF in GF batter’s rheological properties, as well as the end product’s technological and nutritional qualities. The presented comprehensive review aspires to provide insight into the changes in fiber-enriched GF batter’s fundamental rheological properties, and technological, sensory, and nutritional GF bread quality from the insoluble and soluble DF (IDF and SDF) perspective. Different mechanisms for understanding IDF and SDF action on GF batter and bread were discussed. In general, IDF and SDF can enhance, but also diminish, the properties of GF batter and bread, depending on their addition level and the presence of available water in the GF system. However, it was seen that SDF addition provides a more homogenous GF batter structure, leading to bread with higher volumes and softer crumb, compared to IDF. The sensory properties of fiber-enriched GF breads were acceptable in most cases when the inclusion level was up to 7 g/100 g, regardless of the fiber type, enabling the labeling of the bread as a source of fiber.


Sign in / Sign up

Export Citation Format

Share Document