muscle fiber type
Recently Published Documents


TOTAL DOCUMENTS

421
(FIVE YEARS 65)

H-INDEX

48
(FIVE YEARS 4)

Author(s):  
Bimol Roy ◽  
Shahid Mahmood ◽  
H. L. Bruce

Muscle fiber (MF) characteristics of Longissimus thoracis (LT) muscles from heifer (n = 11) and steer (n = 12) carcasses graded Canada AA (AA, normal, n = 4/sex) or dark-cutting (Canada B4) were examined and related to beef quality. Atypical (AB4, pH < 5.9, n = 4/sex) and typical (TB4, pH > 5.9, n = 3 and 4 for heifers and steers, respectively) dark-cutting carcasses were represented. Muscle fiber type proportions did not differ between AA, AB4 and TB4 muscles, although type I and IIB muscle fiber diameters were greater in TB4 than in AA LT. That AB4 muscle fiber proportions were not different from AA and TB4 muscles suggests that the increased MF diameter of TB4 muscle was due to water retained by muscle proteins at high ultimate pH, as evidenced by decreased cooking loss. Dark-cutting was therefore unrelated to muscle fiber proportions, and increased Type I and IIB diameters in dark cutting LT were likely driven by elevated intramuscular ultimate pH.


Agriculture ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 87
Author(s):  
Jingzheng Li ◽  
Jiaolong Li ◽  
Lin Zhang ◽  
Tong Xing ◽  
Yun Jiang ◽  
...  

Guanidinoacetic acid can improve pork quality. Previous studies have demonstrated that pork quality is closely linked to the muscle fiber type mediated by PPARGC1A. Therefore, this study aimed to evaluate the influence of dietary GAA supplementation on the skeletal muscle fiber type transformation. A total of 180 healthy Duroc × Landrace × Meishan cross castrated male pigs with a similar average weight (90 ± 1.5 kg) were randomly divided into three treatments with five replicates per treatment and 12 pigs per replicate, including a GAA-free basal diet and basal diet with 0.05% or 0.10% GAA for 15 days. Our results showed that 0.10% GAA supplementation increased the contents of Ca2+ in sarcoplasm (p < 0.05). Compared with the control group, both GAA supplementation groups upregulated the expression of Troponin I-ss (p < 0.05), and 0.10% GAA supplementation downregulated the expression of Troponin T3 (p < 0.05). GAA supplementation increased the expression of peroxisome proliferator activated receptor-γ coactivator-1alpha (PPARGC1A) (p < 0.05), and further upregulated the mitochondrial transcription factor A (TFAM), increased the level of membrane potential, and the activities of mitochondrial respiratory chain complex I, III (p < 0.05). The 0.10% GAA supplementation upregulated the protein expression of calcineurin catalytic subunit α (CnAα) and nuclear factor of activated T cells (NFATc1) (p < 0.05). Overall, dietary GAA supplementation promotes skeletal muscle fiber types transformation from fast-to-slow-twitch via increasing the PPARGC1A based mitochondrial function and the activation of CaN/NFAT pathway in finishing pigs.


Author(s):  
Gaspard Fournier ◽  
Clara Bernard ◽  
Maxime Cievet‐Bonfils ◽  
Raymond Kenney ◽  
Maxime Pingon ◽  
...  

2022 ◽  
Author(s):  
Huawei Li ◽  
Xiaoling Chen ◽  
Zhiqing Huang ◽  
Daiwen Chen ◽  
Bing Yu ◽  
...  

Ellagic acid (EA) is a natural polyphenolic compound, which shows various effects, such as anti-inflammatory, antioxidant, and inhibition of platelet aggregation. In this study, we investigated the effect of EA...


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiangyu Zhang ◽  
Cuixia Zhang ◽  
Chao Yang ◽  
Liangde Kuang ◽  
Jie Zheng ◽  
...  

Due to the dietetic properties and remarkable nutritive value of rabbit meat, its industry is increasing rapidly. However, the association between circular RNAs, microRNAs, and proteins and muscle fiber type, and meat quality of rabbit is still unknown. Here, using deep sequencing and iTRAQ proteomics technologies we first identified 3159 circRNAs, 356 miRNAs, and 755 proteins in the longissimus dorsi tissues from Sichuan white (SCWrabs) and Germany great line ZIKA rabbits (ZIKArabs). Next, we identified 267 circRNAs, 3 miRNAs, and 29 proteins differentially expressed in the muscle tissues of SCWrabs and ZIKArabs. Interaction network analysis revealed some key regulation relationships between noncoding RNAs and proteins that might be associated with the muscle fiber type and meat quality of rabbit. Further, miRNA isoforms and gene variants identified in SCWrabs and ZIKArabs revealed some pathways and biological processes related to the muscle development. This is the first study of noncoding RNA and protein profiles for the two rabbit breeds. It provides a valuable resource for future studies in rabbits and will improve our understanding of the molecular regulation mechanisms in the muscle development of livestock. More importantly, the output of our study will benefit the researchers and producers in the rabbit breeding program.


Author(s):  
Amanda N. Cooper ◽  
William J. McDermott ◽  
James C. Martin ◽  
Shea O. Dulaney ◽  
David R. Carrier

Muscle design constraints preclude simultaneous specialization of the vertebrate locomotor system for explosive and economical force generation. The resulting performance trade-off between power and economy has been attributed primarily to individual differences in muscle fiber type composition. While certainly crucial for performance specialization, fiber type likely interacts with muscle architectural parameters, such as fascicle length, to produce this trade-off. Longer fascicles composed of more serial sarcomeres can achieve faster shortening velocities, allowing for greater power production. Long fascicles likely reduce economy, however, because more energy-consuming contractile units are activated for a given force production. We hypothesized that longer fascicles are associated with both increased power production and locomotor cost. In a set of 11 power- and 13 endurance-trained recreational athletes, we measured 1) muscle fascicle length via ultrasound in gastrocnemius lateralis, gastrocnemius medialis, and vastus lateralis, 2) maximal power during cycling and countermovement jumps, and 3) running cost of transport. We estimated muscle fiber type noninvasively based on the pedaling rate at which maximal cycling power occurred. As predicted, longer gastrocnemius muscle fascicles were correlated with greater lower-body power production and cost of transport. Multiple regression analyses revealed that variability in maximal power was explained by fiber type (48% for cycling; 25% for jumping) and average fascicle length (18% for cycling; 12% for jumping), while average fascicle length accounted for 15% of the variation in cost of transport. These results suggest that, at least for certain muscles, fascicle length plays an important role in the power versus economy performance trade-off.


Sign in / Sign up

Export Citation Format

Share Document