Site-specific recombination in “petite colony” mutants of Saccharomyces cerevisiae

1977 ◽  
Vol 156 (2) ◽  
pp. 163-175 ◽  
Author(s):  
J. Lazowska ◽  
P. P. Slonimski
1985 ◽  
Vol 5 (12) ◽  
pp. 3451-3457 ◽  
Author(s):  
K M Downs ◽  
G Brennan ◽  
S W Liebman

Chromosomal rearrangements associated with one Ty1 element in the iso-1-cytochrome c (CYC1) region of Saccharomyces cerevisiae yeast cells were examined. Most of the rearrangements were deletions of the three linked genes, CYC1, OSM1, and RAD7, and resulted from recombination involving the single Ty1 element and a solo delta in the same orientation. These deletions differed by the number of Ty1 elements (zero, one, or two) remaining after deletion and by restriction site heterogeneities associated with these elements. A single Ty1 element remained at the deletion junction point much more frequently than no Ty1. Apparently the Ty1-associated delta element nearer to the solo delta was involved more often in recombination than the more distal Ty1-associated delta element. The restriction site data implicate gene conversion and suggest that site-specific recombination within the deltas, if occurring, is not the only mechanism of delta-delta recombination. Three other rearrangements bore deletions which began at the end of the Ty1 element and extended into regions not bearing Ty1 or delta sequences. Two of these deletions eliminated 7 kilobases of DNA, although they differed by an associated reciprocal translocation. The third involved a deletion of 14.7 kilobases of DNA associated with an overlapping inversion.


Genetics ◽  
1986 ◽  
Vol 114 (2) ◽  
pp. 347-361
Author(s):  
Patricia J Pukkila ◽  
Michael D Stephens ◽  
David M Binninger ◽  
Beverly Errede

ABSTRACT The CYC7-H3 mutation is a 5-kb deletion that causes overproduction of iso-2 cytochrome c. Unlike most mutations in yeast, the CYC7-H3 mutation is preferentially lost when it is involved in a gene conversion event. We have shown that cloned copies of CYC7-H3 DNA that are inserted into the yeast genome are associated with a high frequency of recombination and aberrant segregation events. Since parity in conversion frequency was observed when the extensive insertion/deletion heterozygosity at this locus was eliminated, we conclude that the CYC7-H3 sequences are inherently capable of acting as donors or recipients in gene conversion events, although they are unlikely to act as donors when they are located opposite a large heterology. DNA sequence comparisons revealed similarities between the CYC7-H3 junction region and the 2-µm circle DNA region that is involved in site-specific recombination.


1987 ◽  
Vol 7 (6) ◽  
pp. 2087-2096
Author(s):  
B Sauer

The procaryotic cre-lox site-specific recombination system of coliphage P1 was shown to function in an efficient manner in a eucaryote, the yeast Saccharomyces cerevisiae. The cre gene, which codes for a site-specific recombinase, was placed under control of the yeast GALI promoter. lox sites flanking the LEU2 gene were integrated into two different chromosomes in both orientations. Excisive recombination at the lox sites (as measured by loss of the LEU2 gene) was promoted efficiently and accurately by the Cre protein and was dependent upon induction by galactose. These results demonstrate that a procaryotic recombinase can enter a eucaryotic nucleus and, moreover, that the ability of the Cre recombinase to perform precise recombination events on the chromosomes of S. cerevisiae is unimpaired by chromatin structure.


1985 ◽  
Vol 5 (12) ◽  
pp. 3451-3457
Author(s):  
K M Downs ◽  
G Brennan ◽  
S W Liebman

Chromosomal rearrangements associated with one Ty1 element in the iso-1-cytochrome c (CYC1) region of Saccharomyces cerevisiae yeast cells were examined. Most of the rearrangements were deletions of the three linked genes, CYC1, OSM1, and RAD7, and resulted from recombination involving the single Ty1 element and a solo delta in the same orientation. These deletions differed by the number of Ty1 elements (zero, one, or two) remaining after deletion and by restriction site heterogeneities associated with these elements. A single Ty1 element remained at the deletion junction point much more frequently than no Ty1. Apparently the Ty1-associated delta element nearer to the solo delta was involved more often in recombination than the more distal Ty1-associated delta element. The restriction site data implicate gene conversion and suggest that site-specific recombination within the deltas, if occurring, is not the only mechanism of delta-delta recombination. Three other rearrangements bore deletions which began at the end of the Ty1 element and extended into regions not bearing Ty1 or delta sequences. Two of these deletions eliminated 7 kilobases of DNA, although they differed by an associated reciprocal translocation. The third involved a deletion of 14.7 kilobases of DNA associated with an overlapping inversion.


1987 ◽  
Vol 7 (6) ◽  
pp. 2087-2096 ◽  
Author(s):  
B Sauer

The procaryotic cre-lox site-specific recombination system of coliphage P1 was shown to function in an efficient manner in a eucaryote, the yeast Saccharomyces cerevisiae. The cre gene, which codes for a site-specific recombinase, was placed under control of the yeast GALI promoter. lox sites flanking the LEU2 gene were integrated into two different chromosomes in both orientations. Excisive recombination at the lox sites (as measured by loss of the LEU2 gene) was promoted efficiently and accurately by the Cre protein and was dependent upon induction by galactose. These results demonstrate that a procaryotic recombinase can enter a eucaryotic nucleus and, moreover, that the ability of the Cre recombinase to perform precise recombination events on the chromosomes of S. cerevisiae is unimpaired by chromatin structure.


Sign in / Sign up

Export Citation Format

Share Document