extrachromosomal dna
Recently Published Documents


TOTAL DOCUMENTS

213
(FIVE YEARS 48)

H-INDEX

31
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Tiansheng Zeng ◽  
Wenhui Huang ◽  
Longzhen Cui ◽  
Wenjuan Zhang ◽  
Qing Lin ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Jane Hawkey ◽  
Hugh Cottingham ◽  
Alex Tokolyi ◽  
Ryan R Wick ◽  
Louise M Judd ◽  
...  

Linear plasmids are extrachromosomal DNA that have been found in a small number of bacterial species. To date, the only linear plasmids described in the Enterobacteriaceae family belong to Salmonella, first found in Salmonella Typhi. Here, we describe a collection of 12 isolates of the Klebsiella pneumoniae species complex in which we identified linear plasmids. We used this collection to search public sequence databases and discovered an additional 74 linear plasmid sequences in a variety of Enterobacteriaceae species. Gene content analysis divided these plasmids into five distinct phylogroups, with very few genes shared across more than two phylogroups. The majority of linear plasmid-encoded genes are of unknown function, however each phylogroup carried its own unique toxin-antitoxin system and genes with homology to those encoding the ParAB plasmid stability system. Passage in vitro of the 12 linear plasmid-carrying Klebsiella isolates in our collection (which include representatives of all five phylogroups) indicated that these linear plasmids can be stably maintained, and our data suggest they can transmit between K. pneumoniae strains (including members of globally disseminated multidrug resistant clones) and also between diverse Enterobacteriaceae species. The linear plasmid sequences, and representative isolates harbouring them, are made available as a resource to facilitate future studies on the evolution and function of these novel plasmids.


Author(s):  
Ryan J Hansen ◽  
Steven Horton ◽  
Julie Wiese ◽  
BellJohn Bibay ◽  
E.Lorena Mora-Blanco ◽  
...  

2021 ◽  
Author(s):  
King L. Hung ◽  
Jens Luebeck ◽  
Siavash R. Dehkordi ◽  
Ceyda Coruh ◽  
Julie A. Law ◽  
...  

Extrachromosomal DNA (ecDNA) is a common mode of oncogene amplification but is challenging to analyze. Here, we present a method for targeted purification of megabase-sized ecDNA by combining in-vitro CRISPR-Cas9 treatment and pulsed field gel electrophoresis of agarose-entrapped genomic DNA (CRISPR-CATCH). We demonstrate strong enrichment of ecDNA molecules containing EGFR, FGFR2 and MYC from human cancer cells. Targeted purification of ecDNA versus chromosomal DNA enabled phasing of genetic variants and provided definitive proof of an EGFRvIII mutation on ecDNA and wild-type EGFR on chromosomal DNA in a glioblastoma neurosphere model. CRISPR-CATCH followed by nanopore sequencing enabled single-molecule ecDNA methylation profiling and revealed hypomethylation of the EGFR promoter on ecDNA compared to the native chromosomal locus in the same cells. Finally, separation of ecDNA species by size and sequencing allowed accurate reconstruction of megabase-sized ecDNA structures with base-pair resolution. CRISPR-CATCH is a new addition to the toolkit for studying focal amplifications in cancer and will accelerate studies aiming to explore the genetic and epigenetic landscapes of ecDNA.


2021 ◽  
pp. candisc.1376.2021
Author(s):  
Eunhee Yi ◽  
Amit D Gujar ◽  
Molly Guthrie ◽  
Hoon Kim ◽  
Dacheng Zhao ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xue-Ke Zhao ◽  
Pengwei Xing ◽  
Xin Song ◽  
Miao Zhao ◽  
Linxuan Zhao ◽  
...  

AbstractThe role of focal amplifications and extrachromosomal DNA (ecDNA) is unknown in gastric cardia adenocarcinoma (GCA). Here, we identify frequent focal amplifications and ecDNAs in Chinese GCA patient samples, and find focal amplifications in the GCA cohort are associated with the chromothripsis process and may be induced by accumulated DNA damage due to local dietary habits. We observe diverse correlations between the presence of oncogene focal amplifications and prognosis, where ERBB2 focal amplifications positively correlate with prognosis and EGFR focal amplifications negatively correlate with prognosis. Large-scale ERBB2 immunohistochemistry results from 1668 GCA patients show survival probability of ERBB2 positive patients is lower than that of ERBB2 negative patients when their surviving time is under 2 years, however, the tendency is opposite when their surviving time is longer than 2 years. Our observations indicate that the ERBB2 focal amplifications may represent a good prognostic marker in GCA patients.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 461-461
Author(s):  
Parth Shah ◽  
Anil Aktas-Samur ◽  
Mariateresa Fulciniti ◽  
Raphael Szalat ◽  
Masood A. Shammas ◽  
...  

Abstract Background Focal amplifications and rearrangements drive tumor growth and evolution in cancer. Focally amplified regions often involve the juxtaposition of rearranged segments of DNA from distinct chromosomal loci into a single amplified region and nearly half of these regions can be explained by circular, extrachromosomal DNA (ecDNA) formation. Cancer-associated ecDNA shows a unique circular placing ecDNA at the interface of cancer genomics and epigenetics. As formation of ecDNA represents a manifestation of genomic instability, we have investigated presence and prognostic impact of ecDNA in multiple myeloma (MM). Methods Whole genome (WGS) and transcriptome (RNAseq) sequencing data from CD138 purified MM cells from 191 uniformly-treated newly diagnosed MM patients were used for this analysis. Copy number variants (CNV), single nucleotide variants (SNV) and structural variants (SV) were identified on all WGS samples using Facets, Mutect2 and Manta. Seed data from these CNV results was passed to the AmpliconArchitect tool to determine presence of focally amplified and rearranged segments of DNA. Seed CNV thresholds were set for a minimum CNV size of 100kb and a copy number of equal or greater to 5. Extrachromosomal calls were then annotated using the Amplicon Classifier to determine the presence of ecDNA. Multivariate survival analysis was performed after segregating samples into the conventional myeloma risk classifications including translocations, copy number alterations, ISS, age and mutations associated with risk. Differential expression analysis was performed on transcriptomic data using DEseq2. Results We identified 6.8% of the newly diagnosed patients with ecDNA, 12.5% with complex non-cyclic DNA amplifications and 10.1% with linear amplifications. ecDNA and complex events were targeting MM dependent genes, including MYC/PVT1, IRF4 as well as known driver genes such as CDYL and TRAF2. We further evaluated association between ecDNA, complex rearrangements, linear amplification and patients with none of these amplification types and found that patients with ecDNA had significantly poor PFS (median PFS 22 months vs. 41 months) and OS (median OS 41 months vs. 105 months). Patients having ecDNA in their MM cells did not show any significant enrichment for known translocations, double hit or TP53 mutations. In a multivariate model including ecDNA and all other known MM risk features, ecDNA was found to be an independent predictor of progression free survival.(HR 2.6, CI: 1.26 -5.6, p=0.0082) and overall survival (HR 7.94 CI:3.5-17.9 p < 0.0001). Patients with ecDNA have higher mutational load probability(8798 vs 6982, effect size = 0.64 , probability is 91.1). However, this was not reflected in heterogeneity by using MATH score. We found that patients with ecDNA are likely to have BRAF mutations (OR= 25.07 [2.57 - 330 95% CI], p value = 0.002), however overall RAS/RAF pathway mutations were similar to other patients. Patients with ecDNA showed fragile DNA with more breaks (median segments 197 vs. 125.5, p value = 0.001). Although ecDNA is defined as copy number gain with fragments having 5 or more copies, overall genomic gain between ecDNA and other patients were similar. However, overall genomic loss in patients with ecDNA were higher than others (7% vs. 4.2%, p = 0.06). By differential gene expression analysis we noted 98 differentially expressed genes in MM cells with ecDNA. The downregulated geneset involved pathways responsible for cell death as well as the RAS pathway. Interestingly, CD38 was upregulated in the ecDNA dataset suggesting greater potential for CD38 targeting therapies in these patients. Conclusions ecDNA, as an unique marker of perturbed genomic integrity, is observed in a subset of patients and is an independent prognostic marker in newly diagnosed MM patients. As patients with ecDNA are not fully captured by other risk features its incorporation in an expanded definition of a high risk group of multiple myeloma should be investigated. Future studies will endeavor to explore the biological mechanism through which ecDNA are formed and influences outcomes in myeloma. Figure 1 Figure 1. Disclosures Richardson: Sanofi: Consultancy; GlaxoSmithKline: Consultancy; Karyopharm: Consultancy, Research Funding; AstraZeneca: Consultancy; AbbVie: Consultancy; Oncopeptides: Consultancy, Research Funding; Takeda: Consultancy, Research Funding; Janssen: Consultancy; Protocol Intelligence: Consultancy; Celgene/BMS: Consultancy, Research Funding; Secura Bio: Consultancy; Regeneron: Consultancy; Jazz Pharmaceuticals: Consultancy, Research Funding. Perrot: Abbvie: Honoraria; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene/BMS: Honoraria, Membership on an entity's Board of Directors or advisory committees; GSK: Honoraria, Membership on an entity's Board of Directors or advisory committees; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Sanofi: Honoraria; Takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Moreau: Abbvie: Honoraria; Amgen: Honoraria; Janssen: Honoraria; Sanofi: Honoraria; Celgene BMS: Honoraria; Oncopeptides: Honoraria. Thakurta: Oxford University: Other: Visiting Professor; BMS: Current Employment, Current equity holder in publicly-traded company. Anderson: Gilead: Membership on an entity's Board of Directors or advisory committees; Millenium-Takeda: Membership on an entity's Board of Directors or advisory committees; Pfizer: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Sanofi-Aventis: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees; AstraZeneca: Membership on an entity's Board of Directors or advisory committees; Scientific Founder of Oncopep and C4 Therapeutics: Current equity holder in publicly-traded company, Current holder of individual stocks in a privately-held company; Mana Therapeutics: Membership on an entity's Board of Directors or advisory committees. Munshi: Legend: Consultancy; Karyopharm: Consultancy; Takeda: Consultancy; Janssen: Consultancy; Novartis: Consultancy; Bristol-Myers Squibb: Consultancy; Amgen: Consultancy; Abbvie: Consultancy; Adaptive Biotechnology: Consultancy; Oncopep: Consultancy, Current equity holder in publicly-traded company, Other: scientific founder, Patents & Royalties; Celgene: Consultancy; Pfizer: Consultancy.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi20-vi20
Author(s):  
Eunhee Yi ◽  
Amit Gujar ◽  
Molly Guthrie ◽  
Hoon Kim ◽  
Dacheng Zhao ◽  
...  

Abstract Oncogenic extrachromosomal DNA elements (ecDNAs) promote intratumoral heterogeneity, creating a barrier for successful cancer treatments. The underlying mechanisms are poorly understood and studies are hampered in part by a lack of adequate tools enabling studies of ecDNA behavior. Here, we show that single-cell ecDNA copy numbers greatly vary between tumor cells, both in vitro and in patient glioblastoma specimens, suggesting uneven ecDNA segregation during mitosis. We established a CRISPR-based approach which leverages unique ecDNA breakpoint sequences to tag ecDNA with fluorescent markers in living cells. Applying this method during mitosis revealed disjointed ecDNA inheritance patterns, providing an explanation for rapid ecDNA accumulation in cancer. Post-mitosis, ecDNAs tended to cluster and clustered ecDNAs colocalized with RNA polymerase II, promoting transcription of cargo oncogenes. Our observations provide direct evidence for uneven segregation of ecDNA and sheds new light on mechanisms through which ecDNAs contribute to oncogenesis.


Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1234
Author(s):  
Sriram KK ◽  
Yii-Lih Lin ◽  
Tsegaye Sewunet ◽  
Marie Wrande ◽  
Linus Sandegren ◽  
...  

Optical DNA mapping (ODM) has developed into an important technique for DNA analysis, where single DNA molecules are sequence-specifically labeled and stretched, for example, in nanofluidic channels. We have developed an ODM assay to analyze bacterial plasmids—circular extrachromosomal DNA that often carry genes that make bacteria resistant to antibiotics. As for most techniques, the next important step is to increase throughput and automation. In this work, we designed and fabricated a nanofluidic device that, together with a simple automation routine, allows parallel analysis of up to 10 samples at the same time. Using plasmids encoding extended-spectrum beta-lactamases (ESBL), isolated from Escherichia coli and Klebsiella pneumoniae, we demonstrate the multiplexing capabilities of the device when it comes to both many samples in parallel and different resistance genes. As a final example, we combined the device with a novel protocol for rapid cultivation and extraction of plasmids from fecal samples collected from patients. This combined protocol will make it possible to analyze many patient samples in one device already on the day the sample is collected, which is an important step forward for the ODM analysis of plasmids in clinical diagnostics.


2021 ◽  
pp. clincanres.CCR-21-2484-A.2021
Author(s):  
John Pang ◽  
Nam-Phuong Nguyen ◽  
Jens Luebeck ◽  
Laurel Ball ◽  
Andrey Finegersh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document