Sponge-mediated coral reef growth and rejuvenation

Coral Reefs ◽  
1984 ◽  
Vol 3 (3) ◽  
pp. 157-163 ◽  
Author(s):  
Janie L. Wulff
Keyword(s):  
2010 ◽  
Vol 35 (2) ◽  
pp. 9-14
Author(s):  
Suhartati M. Natsir

Seribu Islands are archipelago within Jakarta Bay built upon the pleistocene coral formation of the Sunda Shelf. The islands are characterized by unique and high biodiversity such as coral reefs. Since coral reef degradation would lead to a decrease of human prosperity, the determination of the coral reef quality is of high importance. Foraminifera offers an early warning system for the coral reef condition, as exemplified by the FORAM Index, i.e. Foraminifera in Reef Assessment and Monitoring Index. This study compared the foraminiferal community structure and the FORAM Index of two islands between the Damar Besar and Jukung. Both islands were dominated by symbiont-bearing foraminifera of the genera Amphistegina, Calcarina, Heterostegina, Marginophora, and Operculina. However, the number of benthic foraminifers at Jukung Island was higher than that at Damar Besar Island, having 17 individuals per species on average. Jukung Island was a conducive site to reef growth, as indicated by a FORAM Index (between 6,48 and 6,57), and Damar Besar Island was liable to environmental change.


Author(s):  
Peter W. Glynn ◽  
Derek P. Manzello

Nature ◽  
2018 ◽  
Vol 558 (7710) ◽  
pp. 396-400 ◽  
Author(s):  
Chris T. Perry ◽  
Lorenzo Alvarez-Filip ◽  
Nicholas A. J. Graham ◽  
Peter J. Mumby ◽  
Shaun K. Wilson ◽  
...  

Science ◽  
2012 ◽  
Vol 337 (6090) ◽  
pp. 81-84 ◽  
Author(s):  
Lauren T. Toth ◽  
Richard B. Aronson ◽  
Steven V. Vollmer ◽  
Jennifer W. Hobbs ◽  
Dunia H. Urrego ◽  
...  

Cores of coral reef frameworks along an upwelling gradient in Panamá show that reef ecosystems in the tropical eastern Pacific collapsed for 2500 years, representing as much as 40% of their history, beginning about 4000 years ago. The principal cause of this millennial-scale hiatus in reef growth was increased variability of the El Niño–Southern Oscillation (ENSO) and its coupling with the Intertropical Convergence Zone. The hiatus was a Pacific-wide phenomenon with an underlying climatology similar to probable scenarios for the next century. Global climate change is probably driving eastern Pacific reefs toward another regional collapse.


2020 ◽  
Author(s):  
Gerhard Masselink ◽  
Robert McCall ◽  
Edward Beetham ◽  
Paul Simon Kench ◽  
Curt D. Storlazzi

1999 ◽  
Vol 155 (3-4) ◽  
pp. 331-345 ◽  
Author(s):  
Ken J Woolfe ◽  
Piers Larcombe

Coral Reefs ◽  
1988 ◽  
Vol 7 (1) ◽  
pp. 51-56 ◽  
Author(s):  
R. W. Buddemeier ◽  
S. V. Smith

2010 ◽  
Vol 35 (2) ◽  
pp. 9
Author(s):  
Suhartati M. Natsir

Seribu Islands are archipelago within Jakarta Bay built upon the pleistocene coral formation of the Sunda Shelf. The islands are characterized by unique and high biodiversity such as coral reefs. Since coral reef degradation would lead to a decrease of human prosperity, the determination of the coral reef quality is of high importance. Foraminifera offers an early warning system for the coral reef condition, as exemplified by the FORAM Index, i.e. Foraminifera in Reef Assessment and Monitoring Index. This study compared the foraminiferal community structure and the FORAM Index of two islands between the Damar Besar and Jukung. Both islands were dominated by symbiont-bearing foraminifera of the genera Amphistegina, Calcarina, Heterostegina, Marginophora, and Operculina. However, the number of benthic foraminifers at Jukung Island was higher than that at Damar Besar Island, having 17 individuals per species on average. Jukung Island was a conducive site to reef growth, as indicated by a FORAM Index (between 6,48 and 6,57), and Damar Besar Island was liable to environmental change.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7586 ◽  
Author(s):  
Janina V. Büscher ◽  
Max Wisshak ◽  
Armin U. Form ◽  
Jürgen Titschack ◽  
Kerstin Nachtigall ◽  
...  

Coral reef resilience depends on the balance between carbonate precipitation, leading to reef growth, and carbonate degradation, for example, through bioerosion. Changes in environmental conditions are likely to affect the two processes differently, thereby shifting the balance between reef growth and degradation. In cold-water corals estimates of accretion-erosion processes in their natural habitat are scarce and solely live coral growth rates were studied with regard to future environmental changes in the laboratory so far, limiting our ability to assess the potential of cold-water coral reef ecosystems to cope with environmental changes. In the present study, growth rates of the two predominant colour morphotypes of live Lophelia pertusa as well as bioerosion rates of dead coral framework were assessed in different environmental settings in Norwegian cold-water coral reefs in a 1-year in situ experiment. Net growth (in weight gain and linear extension) of live L. pertusa was in the lower range of previous estimates and did not significantly differ between inshore (fjord) and offshore (open shelf) habitats. However, slightly higher net growth rates were obtained inshore. Bioerosion rates were significantly higher on-reef in the fjord compared to off-reef deployments in- and offshore. Besides, on-reef coral fragments yielded a broader range of individual growth and bioerosion rates, indicating higher turnover in live reef structures than off-reef with regard to accretion–bioerosion processes. Moreover, if the higher variation in growth rates represents a greater variance in (genetic) adaptations to natural environmental variability in the fjord, inshore reefs could possibly benefit under future ocean change compared to offshore reefs. Although not significantly different due to high variances between replicates, growth rates of orange branches were consistently higher at all sites, while mortality was statistically significantly lower, potentially indicating higher stress-resistance than the less pigmented white phenotype. Comparing the here measured rates of net accretion of live corals (regardless of colour morphotype) with net erosion of dead coral framework gives a first estimate of the dimensions of both processes in natural cold-water coral habitats, indicating that calcium carbonate loss through bioerosion amounts to one fifth to one sixth of the production rates by coral calcification (disregarding accretion processes of other organisms and proportion of live and dead coral framework in a reef). With regard to likely accelerating bioerosion and diminishing growth rates of corals under ocean acidification, the balance of reef accretion and degradation may be shifted towards higher biogenic dissolution in the future.


Sign in / Sign up

Export Citation Format

Share Document