Fine structure of the lateral-line organ of the common eel, Anguilla japonica

1972 ◽  
Vol 124 (4) ◽  
pp. 454-464 ◽  
Author(s):  
Yasumasa Yamada ◽  
Kiyoshi Hama
1977 ◽  
Vol 176 (1) ◽  
Author(s):  
Kiyoshi Hama ◽  
Yasumasa Yamada

1965 ◽  
Vol 24 (2) ◽  
pp. 193-210 ◽  
Author(s):  
Kiyoshi Hama

The fine structure of the lateral line organ of the Japanese sea eel Lyncozymba nystromi has been studied with the electron microscope. The sensory epithelium of the lateral line organ consists of a cluster of two major types of cells, the sensory hair cells and the supporting cells. The sensory cell is a slender element with a flat upper surface provided with sensory hairs, Two different types of synapses are distinguished on the basal surface of the receptor cell. The first type is an ending without vesicles and the second type is an ending with many vesicles. These are presumed to correspond to the afferent and the efferent innervations of the lateral line organ. The fine structure of the supporting cells and the morphological relationship between the supporting cells and the receptor cells were observed. The possible functions of the supporting cells are as follows: (a) mechanical and metabolic support for the receptor cell; (b) isolation of the individual receptor cell; (c) mucous secretion and probably cupula formation; (d) glial function for the intraepithelial nerve fibers. Both myelinated and unmyelinated fibers were found in the lateral line nerve. The mode of penetration of these fibers into the epithelium was observed.


1980 ◽  
Vol 86 (1) ◽  
pp. 63-77
Author(s):  
ALFONS B. A. KROESE ◽  
JOHAN M. VAN DER ZALM ◽  
JOEP VAN DEN BERCKEN

1. The response of the epidermal lateral-line organ of Xenopus laevis to stimulation was studied by recording extracellular receptor potentials from the hair cells in single neuromasts in isolated preparations. One neuromast was stimulated by local, sinusoidal water movements induced by a glass sphere positioned at a short distance from the neuromast. 2. The amplitudes of the extracellular receptor potentials were proportional to the stimulus amplitude over a range of 20 dB. The phase of the extracellular receptor potentials with respect to water displacement was independent of the stimulus amplitude. 3. With large stimulus amplitude, and stimulus frequencies between 0.5 Hz and 2 Hz, the extracellular receptor potentials, and responses of single afferent nerve fibres, showed a phase lead of 1.2 π radians with respect to water displacement, i.e. they were almost in phase with water acceleration. 4. It is concluded that under conditions of stimulation with small-amplitude water movements, the hair cells respond to sensory hair displacement, whereas under conditions of stimulation with large-amplitude water movements they respond to sensory hair velocity.


1981 ◽  
Vol 36 (5-6) ◽  
pp. 493-496 ◽  
Author(s):  
Bernd Fritzsch

Abstract The arrangement of the lateral line afferents of salamanders as revealed by transganglionic staining with horse­ radish peroxidase is described. Each lateral line organ is supplied by two fibers only. In the medulla these two afferent fibers run in separate fiber bundles. It is suggested, that only those fibers contacting lateral line sensory cells with the same polarity form together one bundle. Bundles formed by anterior or posterior lateral line afferents are also clearly separated. Beside the lateral line organs smaller pit organs are described. These organs are supplied by one afferent only which reveals an arrangement in the medulla different from that of the lateral line afferents. Based on anatomical facts, these small pit organs are considered to be electroreceptors. Centrifugally projecting neurons, most probably efferents, are described in the medulla.


1979 ◽  
Vol 55 (7) ◽  
pp. 374-379 ◽  
Author(s):  
Kouichi SHIOZAWA ◽  
Keiji YANAGISAWA

Bioacoustics ◽  
2002 ◽  
Vol 12 (2-3) ◽  
pp. 153-156 ◽  
Author(s):  
SIETSE M. VAN NETTEN ◽  
J. ESTHER C. WIERSINGA-POST

1988 ◽  
Vol 105 (sup447) ◽  
pp. 9-13
Author(s):  
Takashi Kanda ◽  
Toshio Yoshihara ◽  
Toshio Kaneko ◽  
Yuji Yaku ◽  
Osamu Hojiro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document