posterior lateral line
Recently Published Documents


TOTAL DOCUMENTS

114
(FIVE YEARS 29)

H-INDEX

27
(FIVE YEARS 2)

2021 ◽  
Vol 224 (24) ◽  
Author(s):  
Ali Seleit ◽  
Satoshi Ansai ◽  
Kazunori Yamahira ◽  
Kawilarang W. A. Masengi ◽  
Kiyoshi Naruse ◽  
...  

ABSTRACT A remarkable diversity of lateral line patterns exists in adult teleost fishes, the basis of which is largely unknown. By analysing the lateral line patterns and organ numbers in 29 Oryzias species and strains we report a rapid diversification of the lateral line system within this genus. We show a strong dependence of lateral line elaboration (number of neuromasts per cluster, number of parallel lateral lines) on adult species body size irrespective of phylogenetic relationships. In addition, we report that the degree of elaboration of the anterior lateral line, posterior lateral line and caudal neuromast clusters is tightly linked within species, arguing for a globally coordinated mechanism controlling lateral line organ numbers and patterns. We provide evidence for a polygenic control over neuromast numbers and positioning in the genus Oryzias. Our data also indicate that the diversity in lateral lines can arise as a result of differences in patterning both during embryonic development and post-embryonically, where simpler embryonic patterns generate less complex adult patterns and organ numbers, arguing for a linkage between the two processes.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260372
Author(s):  
Katherine S. Marsay ◽  
Sarah Greaves ◽  
Harsha Mahabaleshwar ◽  
Charmaine Min Ho ◽  
Henry Roehl ◽  
...  

Collective cell migration is essential for embryonic development and homeostatic processes. During zebrafish development, the posterior lateral line primordium (pLLP) navigates along the embryo flank by collective cell migration. The chemokine receptors, Cxcr4b and Cxcr7b, as well as their cognate ligand, Cxcl12a, are essential for this process. We corroborate that knockdown of the zebrafish cd9 tetraspanin orthologue, cd9b, results in mild pLL abnormalities. Through generation of CRISPR and TALEN mutants, we show that cd9a and cd9b function partially redundantly in pLLP migration, which is delayed in the cd9b single and cd9a; cd9b double mutants. This delay led to a transient reduction in neuromast numbers. Loss of both Cd9a and Cd9b sensitized embryos to reduced Cxcr4b and Cxcl12a levels. Together these results provide evidence that Cd9 modulates collective cell migration of the pLLP during zebrafish development. One interpretation of these observations is that Cd9 contributes to more effective chemokine signalling.


Author(s):  
Dongmei Tang ◽  
Yitong Lu ◽  
Na Zuo ◽  
Renchun Yan ◽  
Cheng Wu ◽  
...  

Abstract Background Kdm6b, a specific histone 3 lysine 27 (H3K27) demethylase, has been reported to be implicated in a variety of developmental processes including cell differentiation and cell fate determination and multiple organogenesis. Here, we regulated the transcript level of kdm6bb to study the potential role in controlling the hearing organ development of zebrafish. Methods A morpholino antisense oligonucleotide (MO) strategy was used to induce Kdm6b deficiency; immunohistochemical staining and in situ hybridization analysis were conducted to figure out the morphologic alterations and embryonic mechanisms. Results Kdm6bb is expressed in the primordium and neuromasts at the early stage of zebrafish embryogenesis, suggesting a potential function of Kdm6b in the development of mechanosensory organs. Knockdown of kdm6bb severely influences the cell migration and proliferation in posterior lateral line primordium, abates the number of neuromasts along the trunk, and mRNA-mediated rescue test can partially renew the neuromasts. Loss of kdm6bb might be related to aberrant expressions of chemokine genes encompassing cxcl12a and cxcr4b/cxcr7b in the migrating primordium. Moreover, inhibition of kdm6bb reduces the expression of genes in Fgf signaling pathway, while it increases the axin2 and lef1 expression level of Wnt/β-catenin signaling during the migrating stage. Conclusions Collectively, our results revealed that Kdm6b plays an essential role in guiding the migration of primordium and in regulating the deposition of zebrafish neuromasts by mediating the gene expression of chemokines and Wnt and Fgf signaling pathway. Since histone methylation and demethylation are reversible, targeting Kdm6b may present as a novel therapeutic regimen for hearing disorders.


2021 ◽  
Author(s):  
Naoya Yamaguchi ◽  
Ziyi Zhang ◽  
Teseo Schneider ◽  
Biran Wang ◽  
Daniele Panozzo ◽  
...  

During animal embryogenesis, homeostasis and disease, tissues push and pull on their surroundings to move forward. Although the force-generating machinery is known, it is unknown how tissues exert physical stresses on their substrate to generate motion in vivo. Here, we identify the force transmission machinery, the substrate, and the stresses that a tissue, the zebrafish posterior lateral line primordium, generates during its migration. We find that the primordium couples actin flow through integrins to the basement membrane for forward movement. Talin/integrin-mediated coupling is required for efficient migration and its loss is partly compensated for by increased actin flow. Using Embryogram, an approach to measure stresses in vivo, we show that the primordium's rear exerts high stresses, indicating that this tissue pushes itself forward with its back. This unexpected strategy likely also underlies the motion of other tissues in animals.


2021 ◽  
Vol 15 ◽  
Author(s):  
Remy Manuel ◽  
Ana Belen Iglesias Gonzalez ◽  
Judith Habicher ◽  
Harmen Kornelis Koning ◽  
Henrik Boije

The zebrafish lateral line is a sensory system used to detect changes in water flow. It is comprized of clusters of superficial hair cells called neuromasts. Modulation occurs via excitatory and inhibitory efferent neurons located in the brain. Using mosaic transgenic labeling we provide an anatomical overview of the lateral line projections made by individual inhibitory efferent neurons in 5-day old zebrafish larvae. For each hemisphere we estimate there to be six inhibitory efferent neurons located in two different nuclei. Three distinct cell types were classified based on their projections; to the anterior lateral line around the head, to the posterior lateral line along the body, or to both. Our analyses corroborate previous studies employing back-fills, but our transgenic labeling allowed a more thorough characterization of their morphology. We found that individual inhibitory efferent cells connect to multiple neuromasts and that a single neuromast is connected by multiple inhibitory efferent cells. The efferent axons project to the sensory ganglia and follow the sensory axon tract along the lateral line. Time-lapse imaging revealed that inhibitory efferent axons do not migrate with the primordium as the primary sensory afferent does, but follow with an 8–14 h lag. These data bring new insights into the formation of a sensory circuit and support the hypothesis that different classes of inhibitory efferent cells have different functions. Our findings provide a foundation for future studies focussed toward unraveling how and when sensory perception is modulated by different efferent cells.


2021 ◽  
Author(s):  
Satish Kitambi ◽  
Gayathri Chandrasekar

POU genes are characterized by a conserved POU DNA-binding domain, and are divided into six subclasses. Class III and IV POU genes are predominantly expressed in the developing nervous system. POU class III genes are critical for several neuronal cell differentiation and class IV POU genes serve important functions in the differentiation and survival of sensory neurons. In this study, we attempted to identify POU genes in the zebrafish and pufferfish genomes by using existing bioinformatics tools. We analysed the expression of zebrafish brn1.2 and brn3a genes (brn3a1 and brn3a2)) using whole-mount in situ hybridisation. Similarly to the mammalian orthologue, zebrafish brn1.2 was widely expressed in the forebrain, midbrain and hindbrain. During the late stages of embryogenesis, brn1.2 expressing cells were located in the preoptic area and in the auditory vesicles. Expression of both zebrafish brn3a genes was detected in trigeminal ganglia, cranial sensory ganglia, sensory neurons along the dorsal spinal cord, in the anterior and posterior lateral line placodes (ALL and PLL), retinal ganglion cell layer, optic tectum and in small cell clusters in the forebrain and hindbrain. Similar to mammalian Brn3a, zebrafish brn3a genes were detected in the retina and sensory structures. However, different domains of expression were also observed, namely in spinal sensory neurons, and lateral line system.


2021 ◽  
Author(s):  
Katherine S Marsay ◽  
Sarah Greaves ◽  
Henry Roehl ◽  
Peter N Monk ◽  
Thomas J Carney ◽  
...  

Collective cell migration is essential for embryonic development and homeostatic processes. During zebrafish development, the posterior lateral line primordium (pLLP) navigates along the embryo flank by collective cell migration. The chemokine receptors, CXCR4b and CXCR7b, as well as their cognate ligand, CXCL12a, are essential for this process. Knockdown of the zebrafish CD9 tetraspanin orthologue, cd9b, displayed mild pLL abnormalities. Through generation of CRISPR mutants, we show that cd9a and cd9b function partially redundantly in pLLP migration, which is delayed in the cd9b single and cd9a; cd9b double mutants. This delay led to a transient reduction in neuromast numbers. Loss of both CD9a and CD9b sensitized embryos to reduced CXCR4b and CXCL12a levels. Together these results provide evidence that CD9 modulates collective cell migration of the pLLP through promoting CXCR4b signalling.


2021 ◽  
Author(s):  
Jerónimo R. Miranda-Rodríguez ◽  
Augusto Borges ◽  
Filipe Pinto-Teixeira ◽  
Indra Wibowo ◽  
Hans-Martin Pogoda ◽  
...  

SUMMARYTissue remodeling presents an enormous challenge to the stability of intercellular signaling domains. Here we investigate this issue during the development of the posterior lateral line in zebrafish. We find that the transcriptional co-activator and phosphatase Eya1, mutated in the branchio-oto-renal syndrome in humans, is essential for the homeostasis of the Wnt/β-catenin and FGF morphogenetic domains during the collective migration of lateral-line primordial cells. Loss of Eya1 strongly diminishes the expression of Dkk1, expanding Wnt/β-catenin activity in the primordium, which in turn abrogates FGFR1 expression. Deficits in Eya1 also abolishes the expression of the chemokine receptor CXCR7b, disrupting primordium migration. These results reinforce the concept that morphogenetic domains in dynamically remodeling tissues are formed by cellular states maintained by continuous signaling.


Author(s):  
Ramona Dries ◽  
Annemarie Lange ◽  
Sebastian Heiny ◽  
Katja I. Berghaus ◽  
Martin Bastmeyer ◽  
...  

The posterior lateral line system (pLLS) of aquatic animals comprises small clustered mechanosensory organs along the side of the animal. They develop from proneuromasts, which are deposited from a migratory primordium on its way to the tip of the tail. We here show, that the Neural Cell Adhesion Molecule Ncam1b is an integral part of the pathways initiating and regulating the development of the pLLS in zebrafish. We find that morpholino-knockdowns of ncam1b (i) reduce cell proliferation within the primordium, (ii) reduce the expression of Fgf target gene erm, (iii) severely affect proneuromast formation, and (iv) affect primordium migration. Ncam1b directly interacts with Fgf receptor Fgfr1a, and a knockdown of fgfr1a causes similar phenotypic changes as observed in ncam1b-morphants. We conclude that Ncam1b is involved in activating proliferation by triggering the expression of erm. In addition, we demonstrate that Ncam1b is required for the expression of chemokine receptor Cxcr7b, which is crucial for directed primordial migration. Finally, we show that the knockdown of ncam1b destabilizes proneuromasts, suggesting a further function of Ncam1b in strengthening the cohesion of proneuromast cells.


Sign in / Sign up

Export Citation Format

Share Document