The uniqueness of a solution to an inverse scattering problem for electromagnetic waves

1992 ◽  
Vol 119 (1) ◽  
pp. 59-70 ◽  
Author(s):  
David Colton ◽  
Lassi P�iv�rinta
1988 ◽  
Vol 103 (3) ◽  
pp. 561-575 ◽  
Author(s):  
David Colton ◽  
Lassi Päivärinta

AbstractWe consider the scattering of time harmonic electromagnetic waves by an inhomogeneous medium of compact support. It is first shown that the set of far field patterns of the electric fields corresponding to incident plane waves propagating in arbitrary directions is complete in the space of square-integrable tangential vector fields defined on the unit sphere. We then show that under certain conditions the electric far field patterns satisfy an integral identity involving the unique solution of a new class of boundary value problems for Maxwell's equations called the interior transmission problem for electromagnetic waves. Finally, it is indicated how this integral identity can be used to formulate an optimization scheme yielding an optimal solution of the inverse scattering problem for electromagnetic waves.


2003 ◽  
Vol 10 (3) ◽  
pp. 411-425
Author(s):  
Fioralba Cakoni ◽  
David Colton

Abstract The linear sampling method is an algorithm for solving the inverse scattering problem for acoustic and electromagnetic waves. The method is based on showing that a linear integral equation of first kind has a solution that becomes unbounded as a parameter 𝑧 approaches the boundary of the scatterer 𝐷 from inside 𝐷. However, except for the case of the transmission problem, the case where z is in the exterior of 𝐷 is unresolved. Since for the inverse scattering problem 𝐷 is unknown, this step is crucial for the mathematical justification of the linear sampling method. In this paper we give a mathematical justification of the linear sampling method for arbitrary 𝑧 by using the theory of integral equations of first kind with singular kernels.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Dinh-Liem Nguyen ◽  
Trung Truong

AbstractThis paper is concerned with the inverse scattering problem for the three-dimensional Maxwell equations in bi-anisotropic periodic structures. The inverse scattering problem aims to determine the shape of bi-anisotropic periodic scatterers from electromagnetic near-field data at a fixed frequency. The factorization method is studied as an analytical and numerical tool for solving the inverse problem. We provide a rigorous justification of the factorization method which results in the unique determination and a fast imaging algorithm for the periodic scatterer. Numerical examples for imaging three-dimensional periodic structures are presented to examine the efficiency of the method.


2021 ◽  
Vol 7 (1) ◽  
pp. 5
Author(s):  
Douglas Kurrant ◽  
Muhammad Omer ◽  
Nasim Abdollahi ◽  
Pedram Mojabi ◽  
Elise Fear ◽  
...  

Evaluating the quality of reconstructed images requires consistent approaches to extracting information and applying metrics. Partitioning medical images into tissue types permits the quantitative assessment of regions that contain a specific tissue. The assessment facilitates the evaluation of an imaging algorithm in terms of its ability to reconstruct the properties of various tissue types and identify anomalies. Microwave tomography is an imaging modality that is model-based and reconstructs an approximation of the actual internal spatial distribution of the dielectric properties of a breast over a reconstruction model consisting of discrete elements. The breast tissue types are characterized by their dielectric properties, so the complex permittivity profile that is reconstructed may be used to distinguish different tissue types. This manuscript presents a robust and flexible medical image segmentation technique to partition microwave breast images into tissue types in order to facilitate the evaluation of image quality. The approach combines an unsupervised machine learning method with statistical techniques. The key advantage for using the algorithm over other approaches, such as a threshold-based segmentation method, is that it supports this quantitative analysis without prior assumptions such as knowledge of the expected dielectric property values that characterize each tissue type. Moreover, it can be used for scenarios where there is a scarcity of data available for supervised learning. Microwave images are formed by solving an inverse scattering problem that is severely ill-posed, which has a significant impact on image quality. A number of strategies have been developed to alleviate the ill-posedness of the inverse scattering problem. The degree of success of each strategy varies, leading to reconstructions that have a wide range of image quality. A requirement for the segmentation technique is the ability to partition tissue types over a range of image qualities, which is demonstrated in the first part of the paper. The segmentation of images into regions of interest corresponding to various tissue types leads to the decomposition of the breast interior into disjoint tissue masks. An array of region and distance-based metrics are applied to compare masks extracted from reconstructed images and ground truth models. The quantitative results reveal the accuracy with which the geometric and dielectric properties are reconstructed. The incorporation of the segmentation that results in a framework that effectively furnishes the quantitative assessment of regions that contain a specific tissue is also demonstrated. The algorithm is applied to reconstructed microwave images derived from breasts with various densities and tissue distributions to demonstrate the flexibility of the algorithm and that it is not data-specific. The potential for using the algorithm to assist in diagnosis is exhibited with a tumor tracking example. This example also establishes the usefulness of the approach in evaluating the performance of the reconstruction algorithm in terms of its sensitivity and specificity to malignant tissue and its ability to accurately reconstruct malignant tissue.


2004 ◽  
Vol 20 (2) ◽  
pp. 347-365 ◽  
Author(s):  
Alexandre Baussard ◽  
Eric L Miller ◽  
Denis Prémel

Sign in / Sign up

Export Citation Format

Share Document