R-theory for Markov chains on a topological state Space. II

1976 ◽  
Vol 34 (4) ◽  
pp. 269-278 ◽  
Author(s):  
David B. Pollard ◽  
Richard L. Tweedie
1975 ◽  
Vol s2-10 (4) ◽  
pp. 389-400 ◽  
Author(s):  
David B. Pollard ◽  
Richard L. Tweedie

2017 ◽  
Vol 32 (4) ◽  
pp. 626-639 ◽  
Author(s):  
Zhiyan Shi ◽  
Pingping Zhong ◽  
Yan Fan

In this paper, we give the definition of tree-indexed Markov chains in random environment with countable state space, and then study the realization of Markov chain indexed by a tree in random environment. Finally, we prove the strong law of large numbers and Shannon–McMillan theorem for Markov chains indexed by a Cayley tree in a Markovian environment with countable state space.


1976 ◽  
Vol 8 (04) ◽  
pp. 737-771 ◽  
Author(s):  
R. L. Tweedie

The aim of this paper is to present a comprehensive set of criteria for classifying as recurrent, transient, null or positive the sets visited by a general state space Markov chain. When the chain is irreducible in some sense, these then provide criteria for classifying the chain itself, provided the sets considered actually reflect the status of the chain as a whole. The first part of the paper is concerned with the connections between various definitions of recurrence, transience, nullity and positivity for sets and for irreducible chains; here we also elaborate the idea of status sets for irreducible chains. In the second part we give our criteria for classifying sets. When the state space is countable, our results for recurrence, transience and positivity reduce to the classical work of Foster (1953); for continuous-valued chains they extend results of Lamperti (1960), (1963); for general spaces the positivity and recurrence criteria strengthen those of Tweedie (1975b).


1985 ◽  
Vol 22 (01) ◽  
pp. 138-147 ◽  
Author(s):  
Wojciech Szpankowski

Some sufficient conditions for non-ergodicity are given for a Markov chain with denumerable state space. These conditions generalize Foster's results, in that unbounded Lyapunov functions are considered. Our criteria directly extend the conditions obtained in Kaplan (1979), in the sense that a class of Lyapunov functions is studied. Applications are presented through some examples; in particular, sufficient conditions for non-ergodicity of a multidimensional Markov chain are given.


1985 ◽  
Vol 22 (01) ◽  
pp. 123-137 ◽  
Author(s):  
Hideo Ōsawa

This paper studies the reversibility conditions of stationary Markov chains (discrete-time Markov processes) with general state space. In particular, we investigate the Markov chains having atomic points in the state space. Such processes are often seen in storage models, for example waiting time in a queue, insurance risk reserve, dam content and so on. The necessary and sufficient conditions for reversibility of these processes are obtained. Further, we apply these conditions to some storage models and present some interesting results for single-server queues and a finite insurance risk model.


1990 ◽  
Vol 4 (1) ◽  
pp. 89-116 ◽  
Author(s):  
Ushlo Sumita ◽  
Maria Rieders

A novel algorithm is developed which computes the ergodic probability vector for large Markov chains. Decomposing the state space into lumps, the algorithm generates a replacement process on each lump, where any exit from a lump is instantaneously replaced at some state in that lump. The replacement distributions are constructed recursively in such a way that, in the limit, the ergodic probability vector for a replacement process on one lump will be proportional to the ergodic probability vector of the original Markov chain restricted to that lump. Inverse matrices computed in the algorithm are of size (M – 1), where M is the number of lumps, thereby providing a substantial rank reduction. When a special structure is present, the procedure for generating the replacement distributions can be simplified. The relevance of the new algorithm to the aggregation-disaggregation algorithm of Takahashi [29] is also discussed.


1985 ◽  
Vol 22 (1) ◽  
pp. 138-147 ◽  
Author(s):  
Wojciech Szpankowski

Some sufficient conditions for non-ergodicity are given for a Markov chain with denumerable state space. These conditions generalize Foster's results, in that unbounded Lyapunov functions are considered. Our criteria directly extend the conditions obtained in Kaplan (1979), in the sense that a class of Lyapunov functions is studied. Applications are presented through some examples; in particular, sufficient conditions for non-ergodicity of a multidimensional Markov chain are given.


Sign in / Sign up

Export Citation Format

Share Document