Asymptotics of the stress-strain state in the vicinity of a three-dimensional pointed inclusion

1986 ◽  
Vol 21 (5) ◽  
pp. 535-543
Author(s):  
A. B. Movchan ◽  
S. A. Nazarov
2018 ◽  
Vol 243 ◽  
pp. 00021
Author(s):  
Pavel Pisarev ◽  
Aleksandr Anoshkin ◽  
Vladislav Ashihmin

In this research we developed a technique for calculating the stress-strain state of a model construction from a thermoplastic composite material with an embedded piezoactuator. Numerical simulations of the model construction stress-strain state with different arrangement of piezoactuators: upper and middle,-were performed. Numerical simulations were carried out in a three-dimensional setting taking into account the complete technological scheme of laying and anisotropy of the properties of reinforcing layers. The results of numerical experiments revealed the areas of maximum stress. Recommendations for the MFC’s embedding into composite materials were formulated.


Author(s):  
Viktor Gaidaichuk ◽  
Kostiantyn Kotenko

The problem of dynamic deformation of a three-layer cylindrical shell under non-stationary loads in the case of rigid clamping of the shell ends is considered. The article presents the results of assessing the stress-strain state of a three-layer cylindrical shell, taking into account its structural feature, the ratio of the sheathing thickness and the physical and mechanical characteristics of a one-piece polymer filler. Calculations were performed by software complex Nastran. The values of displacements and stresses were calculated by the algorithm of direct transient dynamic process. The step duration of the time interval was 0.0000025 s, and the total number of steps was 200. The choice of the type of three-dimensional finite element was due to obtaining more detailed and accurate calculation results. The finite element model included 19000 three-dimensional finite elements and numbered 20800 nodes. The influence of geometrical parameters of shell layers with different physical and mechanical properties of one-piece filler on the stress-strain state under axisymmetric internal impulse load is investigated. Numerical results on the dynamics of the three-layer structure, obtained by the finite element method, allow to characterize the stress-strain state of the three-layer elastic structure of the cylindrical type at any time in the studied time interval. Optimization of the shell design is recommended. Changing the ratio of the thickness of the internal and external shells of the shell significantly affects the stress-strain state of the shell and its performance. Increasing the thickness of the internal layer of the shell significantly contributes to the increase of the latter. Comparison of the given results with materials of other similar researches and positions, testify to objectivity of the made approach.


Author(s):  
V.V. LEONTYEV

The method for analyzing of stress-strain state characteristics of unloaded riveted joints performed with OST 1 11781-74 rivets has been developed using Coupled Euler-Lagrange finite element approach implemented in the CAD / CAE system Abaqus. A comparative analysis of the stress-strain state characteristics of the examined riveted joint’s finite element models using the Lagrangian and the Coupled Lagrangian-Eulerian finite element approaches has been conducted. A three- dimensional finite element model based on the CLE method has been proposed for further study of fatigue strength and durability of the loaded riveted joints.


2020 ◽  
Vol 82 (2) ◽  
pp. 189-200
Author(s):  
Val.V. Firsanov ◽  
V.T. Pham

The results of a study of the stress-strain state of a conical shell of variable thickness based on a non-classical theory are presented. The sought-for displacements of the shell are approximated by polynomials in the normal coordinate to the median surface two degrees higher in relation to the classical theory of the Kirchhoff-Love type. When developing the theory, the three-dimensional equations of the theory of elasticity, as well as Lagrange variational principle are used as the equation of the shell state. As the result of minimizing the specified value of the total energy of the shell, a mathematical model is constructed, which is a system of differential equations of equilibrium in the displacements with variable coefficients and the corresponding boundary conditions. Two cases are considered: the shell is under the action of symmetric and asymmetric loads. Two-dimensional equations are transformed to the system of ordinary differential equations by means of trigonometric sequences as per circumferential coordinate. To solve the formulated boundary value problem, finite difference and matrix sweep methods are applied. The calculations have been made by means of a computer program. After having determined the displacements, shell deformations and tangential stresses are found from geometric and physical equations, transverse stresses - from the equilibrium equations of the three-dimensional theory of elasticity. As an example, a conical shell rigidly restrained at the two edges, with asymmetrically varying thickness is considered. Compared are the results of the VAT calculations obtained as per the improved and classical theories. The significant contribution of additional stresses in the boundary zone to the total stress state of the shell is shown. The received results can be used in the strength and durability calculations and tests of machine-building facilities of various purposes.


Sign in / Sign up

Export Citation Format

Share Document