thermoplastic composite
Recently Published Documents


TOTAL DOCUMENTS

909
(FIVE YEARS 259)

H-INDEX

36
(FIVE YEARS 6)

2021 ◽  
Author(s):  
Raymond Nicholas Burke ◽  
Abdallah Mohd AR Al Tamimi ◽  
Wael Salem Al Shouly ◽  
Mohamed Ali Jaber ◽  
David Erik Baetsen

Abstract Industry-wide, the degradation and corrosion of steel infrastructure and the associated maintenance to prevent or mitigate this, poses a heavy environmental and operational burden across many industry segments. To address these challenges, ADNOC Group Technology, led by our Non-Metallic Steering Committee and ADNOC Upstream, in partnership with several selected specialist product companies, is deploying a range of innovative solutions as pilot trials within a holistic R&D program – which is aiming to transform our production and processing facilities, with a close focus on integrity management – and specifically we are assessing the deployment of non-metallic pipelines, storage and process vessels as well as downhole tubing and casing. Focusing specifically on flowlines and pipelines - traditional steel pipes used in the oil patch are burdensome to store, transport and install, as well as susceptible to degradation, corrosion-driven wall loss in challenging operational environments, such as those found Onshore and Offshore Abu Dhabi. This vulnerability results in increased operating risks as facilities mature, adding cost and time for inspection, maintenance and eventually - replacements that will lead to production deferrals or interruptions. A range of non-metallic pipeline technologies are being assessed and piloted in this program, including stand-alone extruded polymeric pipe and liners, Reinforced Thermoplastic Pipe (RTP) used Onshore and Offshore, specialized non-metallic flexible pipelines for Offshore including Thermoplastic Composite Pipe (TCP) and downhole tubulars. The methodology involves placing segments of RTP into live pipeline systems for a finite duration of operation – usually one year – and then removing sections to assess any degradation in performance, or capability of the RTP during that time. These test results will be the subject of a further publication at the end of this trial period. In this paper, we will focus on RTP piloting Onshore and specifically mention a unique trial in an ultra-sour gas field, where the technology has already delivered the required performance: safely transporting gas with levels of H2S up to 10% by volume. This trial also proves that specifically engineered non-metallic products may be successfully operated at the high temperature and high pressure (HPHT) levels that are characteristic of our reservoirs.


2021 ◽  
pp. 095400832110515
Author(s):  
Guangming Dai ◽  
Lihua Zhan ◽  
Chenglong Guan ◽  
Minghui Huang

The forming process is the core factor to control the quality of thermoplastic composite components. In this paper, the common I-stiffened structures in the aerospace field were taken as the research object, and the forming process scheme was designed. Based on the prefabrication of C-shaped parts, the I-stiffened structures were prepared by the compression molding process. The influence law of molding temperature on the quality of the prefabricated C-shaped parts was explored. The time dependence of the PEEK melt viscosity was tested to provide the basis for the optimization of forming process parameters of I-stiffened structures. The influencing mechanism of thermoplastic composites repeatedly forming to the bonding strength of remelting interface was studied. The results show that repeated forming would lead to polymer aging and result in low bonding strength at the remelting interface of the I-stiffened structures. Optimizing the forming process could effectively reduce the aging of materials and improve the bonding strength of the remelting interface and overall mechanical properties of components. The research provides technical guidance for the manufacturing of complex thermoplastic composite components, especially the influence mechanism of the forming process on the bonding strength of remelting interface.


Author(s):  
Benjamin Gröger ◽  
Daniel Köhler ◽  
Julian Vorderbrüggen ◽  
Juliane Troschitz ◽  
Robert Kupfer ◽  
...  

AbstractRecent developments in automotive and aircraft industry towards a multi-material design pose challenges for modern joining technologies due to different mechanical properties and material compositions of various materials such as composites and metals. Therefore, mechanical joining technologies like clinching are in the focus of current research activities. For multi-material joints of metals and thermoplastic composites thermally assisted clinching processes with advanced tool concepts are well developed. The material-specific properties of fibre-reinforced thermoplastics have a significant influence on the joining process and the resulting material structure in the joining zone. For this reason, it is important to investigate these influences in detail and to understand the phenomena occurring during the joining process. Additionally, this provides the basis for a validation of a numerical simulation of such joining processes. In this paper, the material structure in a joint resulting from a thermally assisted clinching process is investigated. The joining partners are an aluminium sheet and a thermoplastic composite (organo sheet). Using computed tomography enables a three-dimensional investigation that allows a detailed analysis of the phenomena in different joining stages and in the material structure of the finished joint. Consequently, this study provides a more detailed understanding of the material behavior of thermoplastic composites during thermally assisted clinching.


2021 ◽  
pp. 115085
Author(s):  
Wenhao Li ◽  
Shijun Guo ◽  
Ioannis K. Giannopoulos ◽  
Minxiao Lin ◽  
Yi Xiong ◽  
...  

2021 ◽  
Vol 945 (1) ◽  
pp. 012075
Author(s):  
Fu Yee Xuen ◽  
Kwan Wai Hoe ◽  
Yamuna Munusamy

Abstract An innovative thermoplastic composite was produced using quarry dust which is an industrial waste from quarry industries. The quarry dust was added into high-density polyethylene (HDPE) using melt blending technique in an internal mixer at different mixing loading ratios. The quarry dust filled HDPE (QD-HDPE) composites were then characterized in terms of morphological and mechanical properties. Analysis on processing torque to produce QD-HDPE composites was conducted and the results showed that the optimum quarry dust loading in HDPE composites is at 30wt%. The results from mechanical test such as ultimate tensile strength (UTS), E-modulus, elongation at break, and flexural strength justify this. Scanning Electron Microscopy (SEM) analysis shows that quarry dust had a rough surface with sharp edges and it can be successfully added into HDPE matrix as a filler. In conclusion, performance of the HDPE composites is enhanced by the incorporation of quarry dust. This indicates that quarry dust is a potential filler to be used in thermoplastic composite industries in order to reduce the production cost and relax the pollution problems.


2021 ◽  
Vol 173 ◽  
pp. 114120
Author(s):  
Jianxiu Hao ◽  
Xin Yi ◽  
Guanggong Zong ◽  
Yongming Song ◽  
Weihong Wang ◽  
...  

2021 ◽  
Author(s):  
Gerardo A. Mazzei Capote ◽  
Maria Camila Montoya-Ospina ◽  
Zijie Liu ◽  
Michael S. Mattei ◽  
Boyuan Liu ◽  
...  

Additive Manufacturing techniques allow the production of complex geometries unattainable through other traditional technologies. This advantage lends itself well to rapidly iterate and improve upon the design of microwave photonic devices, which are structures with intricate, repeating features. The issue tackled by this work involves compounding a high-dielectric constant material that can be used to produce 3D topological structures using polymer extrusion-based AM techniques. This material was ABS based, and used barium titanate ceramic as the high-dielectric compound of the composite, and involved the use of a surfactant and a plasticizer to facilitate processing. Initial small amounts of material were compounded using an internal batch mixer, and studied using polymer thermal analysis techniques, such as thermogravimetric analysis, rheometry, and differential scanning calorimetry to determine the proper processing conditions. The production of the material was then scaled-up through the use of a twin-screw extruder system, producing homogeneous pellets. Finally, the thermoplastic composite was used with a screw-based, material extrusion additive manufacturing technique to produce a slab for measuring the dielectric constant of the material, as well as a preliminary 3D photonic crystal. The real part of dielectric constant of the composite was measured to be 12.85 in the range of 10GHz to 12GHz, representing the highest dielectric constant ever demonstrated for a thermoplastic AM composite at microwave frequencies. The dielectric loss tangent was equal to 0.046, representing a low-loss dielectric.


Sign in / Sign up

Export Citation Format

Share Document