Determination of trace metals in river water and suspended solids by TXRF spectrometry

1993 ◽  
Vol 347-347 (10-11) ◽  
pp. 430-435 ◽  
Author(s):  
U. Reus ◽  
B. Markert ◽  
C. Hoffmeister ◽  
D. Spott ◽  
H. Guhr
1987 ◽  
Vol 59 (5) ◽  
pp. 778-783 ◽  
Author(s):  
Diane. Beauchemin ◽  
J. W. McLaren ◽  
A. P. Mykytiuk ◽  
S. S. Berman

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Hong Lien Nguyen ◽  
Anh Tuan Phung ◽  
Trung Kien Tran ◽  
Trung Hai Huynh ◽  
Bich Huong La

Montmorillonite (MMT), a natural clay mineral with high ion-exchange capacity and trace metal adsorbability, has been demonstrated to be a suitable binding phase in the diffusive gradient in thin film (DGT) technique for the determination of labile trace metals in synthetic water samples. However, in situ working performance of DGT-MMT with natural river water has not yet been investigated. The present study examined the performance of a DGT containing montmorillonite (MMT) for the in situ isolation and determination of labile Cd, Pb, Mn, and Zn fractions in Lach Tray River water, North Vietnam. The repeatability and accuracy of the DGT-MMT probe were assessed on the basis of seven measurement replicates performed on Cd2+, Pb2+, Mn2+, and Zn2+ standard solutions. Then, the DGT-MMT probes were deployed in Lach Tray River water at different sampling sites to determine the labile metal fractions present in river water. By comparing the total and dissolved metal concentrations in the river water, the distributions of the four tested trace metals were constructed. The proportions of the dissolved fractions of Cd, Pb, Mn, and Zn were 46.7–73.7%, 38.5–63.9%, 36.4–41.6%, and 49.8–67.7%, respectively. The results also showed that the high accuracy and reproducibility of the DGT-MMT data were comparable with measurements obtained by the commonly used DGT-Chelex-100 method. In comparison with the data obtained from anodic stripping voltammetry (ASV), a traditional technique for the determination of non-in situ speciation of trace metals, labile metal concentrations measured by DGT-MMT were in similar ranges. These findings indicate that naturally available montmorillonite can be used as an alternative binding material in DGT probes for the in situ determination of labile metal concentrations in natural watercourses.


1986 ◽  
Vol 21 (3) ◽  
pp. 332-343 ◽  
Author(s):  
C.H. Chan ◽  
Y.L. Lau ◽  
B.G. Oliver

Abstract The concentration distribution of hexachlorobutadiene (HCBD), pentachloro-benzene (QCB), hexachlorobenzene (HCB) and octachlorostyrene (OCS) in water samples from transects across the upper and lower St. Clair River and the upper Detroit River were determined on four occasions in 1985. The data show a plume of these contaminants from the Sarnia industrial area. The fluxes and concentration profiles of the contaminants at Port Lambton have been modelled success fully using a simple transverse mixing model. A study on the chemical partitioning between the “dissolved” and “suspended sediment” phases shows that an important contaminant fraction is carried in the river by the suspended solids, particularly for lipophilie compounds such as HCB and OCS,


2006 ◽  
Vol 71 (11-12) ◽  
pp. 1571-1587 ◽  
Author(s):  
Karel Čížek ◽  
Jiří Barek ◽  
Jiří Zima

The polarographic behavior of 3-nitrofluoranthene was investigated by DC tast polarography (DCTP) and differential pulse polarography (DPP), both at a dropping mercury electrode, differential pulse voltammetry (DPV) and adsorptive stripping voltammetry (AdSV), both at a hanging mercury drop electrode. Optimum conditions have been found for its determination by the given methods in the concentration ranges of 1 × 10-6-1 × 10-4 mol l-1 (DCTP), 1 × 10-7-1 × 10-4 mol l-1 (DPP), 1 × 10-8-1 × 10-6 mol l-1 (DPV) and 1 × 10-9-1 × 10-7 mol l-1 (AdSV), respectively. Practical applicability of these techniques was demonstrated on the determination of 3-nitrofluoranthene in drinking and river water after its preliminary separation and preconcentration using liquid-liquid and solid phase extraction with the limits of determination 4 × 10-10 mol l-1 (drinking water) and 2 × 10-9 mol l-1 (river water).


1987 ◽  
Vol 21 (9) ◽  
pp. 920-922 ◽  
Author(s):  
Eiji. Uchino ◽  
Tsuneo. Kosuga ◽  
Shigeki. Konishi ◽  
Masakichi. Nishimura
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document