glass fibre
Recently Published Documents


TOTAL DOCUMENTS

3366
(FIVE YEARS 548)

H-INDEX

80
(FIVE YEARS 11)

2022 ◽  
Vol 30 (1) ◽  
pp. 397-412
Author(s):  
Bassam Hamid Alaseel ◽  
Mohamed Ansari Mohamed Nainar ◽  
Noor Afeefah Nordin ◽  
Zainudin Yahya ◽  
Mohd Nazim Abdul Rahim

This study investigates the effect of water absorption on the flexural strength of kenaf/ glass/unsaturated polyester (UPE) hybrid composite solid round rods used for insulating material applications. Three volume fractions of kenaf/glass fibre 20:80 (KGPE20), 30:70 (KGPE30), and 40:60 (KGPE40) with three different fibre arrangement profiles of kenaf fibres were fabricated by using the pultrusion technique and were aimed at studying the effect of kenaf fibres arrangement profile and its content in hybrid composites. The fibre/ resin volume fraction was maintained constant at 60:40. The dispersion morphologies of tested specimens were observed using the scanning electron microscope (SEM). The findings were compared with pure glass fibre-reinforced UPE (control) composite. The water absorption results showed a clear indication of how it influenced the flexural strength of the hybrid and non-hybrid composites. The least affected sample was observed in the 30KGPE composite type, wherein the kenaf fibre was concentrated at the centre of a cross-section of the composite rod. The water absorption reduced the flexural strength by 7%, 40%, 24%, and 38% of glass/UPE (control), 20KGPE, 30KGPE, and 40KGPE composites, respectively. In randomly distributed composite types, the water absorption is directly proportional to the volume fraction of kenaf fibre. At the same time, flexural properties were inversely proportional to the volume fraction of kenaf fibres. Although the influence of water absorption on flexural strength is low, the flexural strength of pultruded hybrid composites was more influenced by the arrangement of kenaf fibre in each composite type than its fibre loading.


Author(s):  
Md. Jahangir Alam ◽  
Mohammad Washim Dewan ◽  
Sojib Kummer Paul ◽  
Khurshida Sharmin

Expensive and non-biodegradable synthetic fibres are commonly utilized as reinforcement in composites for better mechanical properties. The eco-friendly and low-cost properties of natural fibres are promising alternative reinforcement for composites. In this study epoxy-based glass and jute fibres reinforced hybrid composites are fabricated varying fibre stacking sequences, 1jute-1glass alternatively (j-g-j-) and 4glass-9jute-4glass (4g-9j-4g). Hybridization of jute and glass fibre results better tensile, flexural and water absorption properties than only jute fibre reinforced composites but inferior to only glass fibre reinforced composites. The 4g-9j-4g stacking sequence resulted in better mechanical and water absorption properties than j-g-j-- stacking sequence. The effect of chemical treatment and glass microfiber infusion are also investigated. Chemically treated jute fibre and 2 wt.% microfiber infused hybrid composite shows about 42% improvements in flexural strength as compared to untreated and without microfiber infused composites. However, fibre chemical treatment and microfiber do not have a positive impact on tensile strength.


2021 ◽  
pp. 152808372110620
Author(s):  
AR Ngah ◽  
Suhad D Salman ◽  
Z Leman ◽  
SM Sapuan ◽  
MFM Alkbir ◽  
...  

Drilling is a secondary material removal and usually carried out to facilitate fastening of parts together. Drilling of composite materials is not usually a problem-free process. Issues related to delamination composite laminates need to be addressed because it introduces the stress concentration point on the composite. This study focussed on the influence of process parameters such as spindle speed, feed rate, type of drill bits and geometry on the extend of delamination experienced by the composite during the drilling process of kenaf-glass fibre-reinforced unsaturated polyester composite, and the delamination measurements were taken under a microscope. Taguchi methods and analysis of variance were employed to find the optimal parameters. From the results, the most significant parameter was the feed rate. The minimum delamination was achieved when the feed rate was 0.05 mm/rev and spindle speed was 700r/min using both types of drill bits. The quality of the drill hole using the twist drill bit has been proven to be better than the brad drill bit.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 95
Author(s):  
Khaled Giasin ◽  
Hom N. Dhakal ◽  
Carol A. Featheroson ◽  
Danil Yurievich Pimenov ◽  
Colin Lupton ◽  
...  

This study aims to investigate the influence of fibre orientation and varied incident energy levels on the impact-induced damage of S2/FM94, a kind of aerospace glass fibre epoxy/composite regularly used in aircraft components and often subjected to low-velocity impact loadings. Effects of varying parameters on the impact resistance behaviour and damage modes are evaluated experimentally and numerically. Laminates fabricated with four different fibre orientations 0/90/+45/−458s, 0/90/90/08s, +45/−4516s, and  032 were impacted using three energy levels. Experimental results showed that plates with unidirectional fibre orientation failed due to shear stresses, while no penetration occurred for the 0/90/90/08s and +45/−4516s plates due to the energy transfer back to the plate at the point of maximum displacement. The impact energy and resulting damage were modelled using Abaqus/Explicit. The Finite Element (FE) results could accurately predict the maximum impact load on the plates with an accuracy of 0.52% to 13%. The FE model was also able to predict the onset of damage initiation, evolution, and the subsequent reduction of the strength of the impacted laminates. The results obtained on the relationship of fibre geometry and varying incident impact energy on the impact damage modes can provide design guidance of S2/FM94 glass composites for aerospace applications where impact toughness is critical.


2021 ◽  
Vol 16 (59) ◽  
pp. 537-548
Author(s):  
Giacomo Risitano

Thanks to the progress of research on thermoplastic materials, the properties of composite materials have improved considerably. The aim of this study is the evaluation of fatigue strength of glass-fibre-reinforced polypropylene composite (PPGF35) by applying both the Risitano Thermographic Method (RTM) and the new Static Thermographic Method (STM).


Sign in / Sign up

Export Citation Format

Share Document