Effects of acute exercise and prolonged exercise training on blood pressure, vasopressin and plasma renin activity in spontaneously hypertensive rats

1991 ◽  
Vol 62 (3) ◽  
pp. 198-203 ◽  
Author(s):  
F. Ghaemmaghami ◽  
A. M. Allevard ◽  
J. Fareh ◽  
G. Geelen ◽  
C. Gharib
1992 ◽  
Vol 82 (4) ◽  
pp. 389-395 ◽  
Author(s):  
C. Stonier ◽  
J. Bennett ◽  
E. A. Messenger ◽  
G. M. Aber

1. The effect of oestradiol alone and in combination with indomethacin on blood pressure, erythrocyte cation concentration and Na+−K+ flux has been studied in adult female normotensive and spontaneously hypertensive rats. 2. Oestradiol alone resulted in a significant decrease in blood pressure in spontaneously hypertensive rats (from 165.3 ± 3.9 to 146.4 ± 2.7 mmHg, P < 0.001), whereas it induced a significant increase in normotensive rats (from 111.8 ± 1.8 to 124.1 ± 3.6 mmHg, P < 0.001). When indomethacin and oestradiol were administered simultaneously or when indomethacin was given alone, no change in blood pressure occurred in spontaneously hypertensive rats (158.6 ± 6.9 and 159.8 ± 6.2 mmHg, respectively). 3. The fall in blood pressure induced by oestradiol in spontaneously hypertensive rats was associated with significant reductions in erythrocyte K+ concentration (from 127.4 ± 1.2 to 116.9 ± 1.7 mmol/l of cells, P < 0.001), in erythrocyte Na+ concentration (from 14.3 ± 0.8 to 13.0 ± 0.6 mmol/l of cells, P < 0.02), in ouabain-sensitive erythrocyte Na+ flux (from 17.8 ± 0.3 to 16.0 ± 0.4 mmol h−1 (1 of cells)−1, P < 0.01) and in ouabain-sensitive erythrocyte K+ flux (from 11.4 ± 0.2 to 10.4 ± 0.2 mmol h−1 (1 of cells)−1, P < 0.01). No change in blood pressure, erythrocyte cation concentration or Na+−K+ flux occurred when oestradiol and indomethacin were given together or when indomethacin was administered alone. 4. The hypertensive influence of oestradiol in normotensive rats was unaccompanied by any changes in erythrocyte K+ concentration, erythrocyte Na+ concentration and total, ouabain-sensitive and ouabain-resistant Na+−K+ flux. 5. The divergent changes in blood pressure noted in the two strains occurred despite comparable changes in plasma renin activity after oestradiol, with significant increases in plasma renin activity in normotensive rats (from 16.4 ± 4.2 to 28.4 ± 6.6 ng of angiotensin I h−1 ml−1, P < 0.05) and in spontaneously hypertensive rats (from 28.3 ± 2.7 to 39.5 ± 5.7 ng of angiotensin I h−1 ml−1, P < 0.01). The plasma renin activity in spontaneously hypertensive rats receiving oestradiol or indomethacin and oestradiol were similar with values of 39.5 ± 5.7 and 40.6 ± 5.7 ng of angiotensin I h−1 ml−1, respectively, but were significantly higher than that seen in control animals (28.3 ± 2.7 ng of angiotensin I h−1 ml−1, P < 0.01). Similarly, indomethacin alone induced a significant increase in plasma renin activity in spontaneously hypertensive rats to 35.8 ± 7.6 ng of angiotensin I h−1 ml−1 (P < 0.05). 6. The contrasting effects of oestradiol on blood pressure in the two rat strains occurred without any change in packed cell volume. Likewise, the changes in blood pressure in spontaneously hypertensive rats with either oestradiol alone or in combination with indomethacin occurred without any change in packed cell volume, although indomethacin alone resulted in a significant reduction in packed cell volume (from 30.9 ± 1.6 to 26.8 ± 2.0, P < 0.01). 7. The results suggest that the hypotensive action of oestradiol in spontaneously hypertensive rats might be mediated through its influence on erythrocyte cation concentration and/or the modulation of Na+−K+ flux either directly or via the action of prostanoids.


1988 ◽  
Vol 75 (5) ◽  
pp. 527-534 ◽  
Author(s):  
Anne Barden ◽  
Lawrence J. Beilin ◽  
Robert Vandongen

1. Supplementation with 1% (w/v) KCl solution significantly attenuated the blood pressure rise with age normally observed in spontaneously hypertensive rats, resulting in a difference in blood pressure of 18 mmHg after 5 weeks. 2. Urinary 6-keto-prostaglandin F1α (the stable hydrolysis product of prostacyclin) and kallikrein excretion were significantly elevated in rats receiving potassium. 3. No difference was observed in sodium excretion during the initial days of potassium supplementation; however, the potassium-supplemented animals excreted relatively more sodium over the 5 week period. 4. Plasma renin activity was significantly reduced in those animals receiving potassium after 5 weeks. 5. It is proposed that a combination of increased systemic and/or renal prostacyclin and kallikrein synthesis may, in combination with reduced renin activity, contribute to the attenuation of blood pressure in potassium-supplemented spontaneously hypertensive rats.


1987 ◽  
Vol 72 (3) ◽  
pp. 313-319 ◽  
Author(s):  
A. Louise Sugden ◽  
James A. Straw ◽  
Barbara L. Bean

1. Blood pressure was measured after treatment with a high K+, a low Na+ and a combined high K+/low Na+ diet in young spontaneously hypertensive rats (SHR). 2. A high K+ diet reduced blood pressure by approximately 10 mmHg during the development of hypertension. This decrease was accompanied by a significant increase in water intake and urine volume and a significant decrease in plasma renin activity (PRA). 3. A low Na+ diet also decreased blood pressure significantly, but, in contrast to the high K+ diet, water intake and urine volume significantly decreased and PRA increased. 4. When both diets were given together, the antihypertensive effects of both were eliminated. Thus while an increase in dietary K+ and a decrease in dietary Na+ are both effective antihypertensive regimens in SHR, the mechanism of action of each appears to be different and may be antagonistic in these animals.


1979 ◽  
Vol 236 (3) ◽  
pp. H409-H416 ◽  
Author(s):  
M. Shibota ◽  
A. Nagaoka ◽  
A. Shino ◽  
T. Fujita

The development of malignant hypertension was studied in stroke-prone spontaneously hypertensive rats (SHR) kept on 1% NaCl as drinking water. Along with salt-loading, blood pressure gradually increased and reached a severe hypertensive level (greater than 230 mmHg), which was followed by increases in urinary protein (greater than 100 (mg/250 g body wt)/day) and plasma renin concentration (PRC, from 18.9 +/- 0.1 to 51.2 +/- 19.4 (ng/ml)/h, mean +/- SD). At this stage, renal small arteries and arterioles showed severe sclerosis and fibrinoid necrosis. Stroke was observed within a week after the onset of these renal abnormalities. The dose of exogenous angiotensin II (AII) producing 30 mmHg rise in blood pressure increased with the elevation of PRC, from 22 +/- 12 to 75 +/- 36 ng/kg, which was comparable to that in rats on water. The fall of blood pressure due to an AII inhibitor, [1-sarcosine, 8-alanine]AII (10(microgram/kg)/min for 40 min) became more prominent with the increase in PRC in salt-loaded rats, but was not detected in rats on water. These findings suggest that the activation of renin-angiotensin system participates in malignant hypertension of salt-loaded stroke-prone SHR rats that show stroke signs, proteinuria, hyperreninemia, and renovascular changes.


Sign in / Sign up

Export Citation Format

Share Document