Hyperbolic complex Yang-Baxter equation and hyperbolic complex multiparametric quantum groups

1995 ◽  
Vol 34 (11) ◽  
pp. 2171-2177
Author(s):  
Wu Ya-Bo ◽  
Zhong Zai-Zhe
1992 ◽  
Vol 07 (25) ◽  
pp. 6175-6213 ◽  
Author(s):  
T. TJIN

We give a self-contained introduction to the theory of quantum groups according to Drinfeld, highlighting the formal aspects as well as the applications to the Yang-Baxter equation and representation theory. Introductions to Hopf algebras, Poisson structures and deformation quantization are also provided. After defining Poisson Lie groups we study their relation to Lie bialgebras and the classical Yang-Baxter equation. Then we explain in detail the concept of quantization for them. As an example the quantization of sl2 is explicitly carried out. Next we show how quantum groups are related to the Yang-Baxter equation and how they can be used to solve it. Using the quantum double construction we explicitly construct the universal R matrix for the quantum sl2 algebra. In the last section we deduce all finite-dimensional irreducible representations for q a root of unity. We also give their tensor product decomposition (fusion rules), which is relevant to conformal field theory.


1994 ◽  
Vol 05 (04) ◽  
pp. 701-706
Author(s):  
W.-H. STEEB

Quantum groups and quantum algebras play a central role in theoretical physics. We show that computer algebra is a helpful tool in the investigations of quantum groups. We give an implementation of the Kronecker product together with the Yang-Baxter equation. Furthermore the quantum algebra obtained from the Yang-Baxter equation is implemented. We apply the computer algebra package REDUCE.


2000 ◽  
Vol 24 (12) ◽  
pp. 793-806 ◽  
Author(s):  
Tom H. Koornwinder

This paper of tutorial nature gives some further details of proofs of some theorems related to the quantum dynamical Yang-Baxter equation. This mainly expands proofs given in “Lectures on the dynamical Yang-Baxter equation” by Etingof and Schiffmann, math.QA/9908064. This concerns the intertwining operator, the fusion matrix, the exchange matrix and the difference operators. The last part expands proofs given in “Traces of intertwiners for quantum groups and difference equations, I” by Etingof and Varchenko, math.QA/9907181. This concerns the dual Macdonald-Ruijsenaars equations.


This article continues the study of concrete algebra-like structures in our polyadic approach, where the arities of all operations are initially taken as arbitrary, but the relations between them, the arity shapes, are to be found from some natural conditions (“arity freedom principle”). In this way, generalized associative algebras, coassociative coalgebras, bialgebras and Hopf algebras are defined and investigated. They have many unusual features in comparison with the binary case. For instance, both the algebra and its underlying field can be zeroless and nonunital, the existence of the unit and counit is not obligatory, and the dimension of the algebra is not arbitrary, but “quantized”. The polyadic convolution product and bialgebra can be defined, and when the algebra and coalgebra have unequal arities, the polyadic version of the antipode, the querantipode, has different properties. As a possible application to quantum group theory, we introduce the polyadic version of braidings, almost co-commutativity, quasitriangularity and the equations for the R-matrix (which can be treated as a polyadic analog of the Yang-Baxter equation). We propose another concept of deformation which is governed not by the twist map, but by the medial map, where only the latter is unique in the polyadic case. We present the corresponding braidings, almost co-mediality and M-matrix, for which the compatibility equations are found.


Sign in / Sign up

Export Citation Format

Share Document