quantum dynamical
Recently Published Documents


TOTAL DOCUMENTS

590
(FIVE YEARS 59)

H-INDEX

47
(FIVE YEARS 4)

2022 ◽  
Vol 105 (1) ◽  
Author(s):  
Mogens Dalgaard ◽  
Felix Motzoi ◽  
Jacob Sherson

Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2445
Author(s):  
Mariam Algarni ◽  
Kamal Berrada ◽  
Sayed Abdel-Khalek ◽  
Hichem Eleuch

In this manuscript, we examine the dynamical behavior of the coherence in open quantum systems using the l1 norm. We consider a two-qubit system that evolves in the framework of Kossakowski-type quantum dynamical semigroups (KTQDSs) of completely positive maps (CPMs). We find that the quantum coherence can be asymptotically maintained with respect to the values of the system parameters. Moreover, we show that the quantum coherence can resist the effect of the environment and preserve even in the regime of long times. The obtained results also show that the initially separable states can provide a finite value of the coherence during the time evolution. Because of such properties, several states in this type of environments are good candidates for incorporating quantum information and optics (QIO) schemes. Finally, we compare the dynamical behavior of the coherence with the entire quantum correlation.


Author(s):  
A. Zamani ◽  
H. Pahlavani

The nonlinear capacitor that obeys of a cubic polynomial voltage–charge relation (usually a power series in charge) is introduced. The quantum theory for a mesoscopic electric circuit with charge discreteness is investigated, and the Hamiltonian of a quantum mesoscopic electrical circuit comprised by a linear inductor, a linear resistor and a nonlinear capacitor under the influence of a time-dependent external source is expressed. Using the numerical solution approaches, a good analytic approximate solution for the quantum cubic Duffing equation is found. Based on this, the persistent current is obtained antically. The energy spectrum of such nonlinear electrical circuit has been found. The dependency of the persistent current and spectral property equations to linear and nonlinear parameters is discussed by the numerical simulations method, and the quantum dynamical behavior of these parameters is studied.


2021 ◽  
Author(s):  
Sohan Sengupta

Abstract Quantum Fluids follow Quantum Dynamical Equation(s), which were not known till date. There exist a set of two equations, that is semiclassical approach to Quantum Fluids called Madelung’s Equations. But a new fully quantum variant of Madelung’s Equations when embedded in the Schrodinger Equation is gives full description of evolution of Quantum fluid with respect to time and position. The equation presented in this article has two unknown variables, one is density and other is velocity field as a function of spatial and time coordinates. The equation presented in this article, is derived from Schrodinger Equation, obeying Continuity equation, and Navier Strokes Equation. Bohm’s potential were externally added in Madeline’s equation. But the new equation which is fully quantum mechanical in nature; Bohm’s potential appears out of the equation, which is interesting to observe. Astrophysical cold stellar dynamics and condensed fluids have the main application of this equation. Quantum fluids show strange behaviour when compared to normal fluids. It is also shown that quantum fluid also have spins which has no classical analog.


Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1660
Author(s):  
Mikołaj M. Paraniak ◽  
Berthold-Georg Englert

Originally conceived as a thought experiment, an apparatus consisting of two Stern–Gerlach apparatuses joined in an inverted manner touched on the fundamental question of the reversibility of evolution in quantum mechanics. Theoretical analysis showed that uniting the two partial beams requires an extreme level of experimental control, making the proposal in its original form unrealizable in practice. In this work, we revisit the above question in a numerical study concerning the possibility of partial-beam recombination in a spin-coherent manner. Using the Suzuki–Trotter numerical method of wave propagation and a configurable, approximation-free magnetic field, a simulation of a transversal Stern–Gerlach interferometer under ideal conditions is performed. The result confirms what has long been hinted at by theoretical analyses: the transversal Stern–Gerlach interferometer quantum dynamics is fundamentally irreversible even when perfect control of the associated magnetic fields and beams is assumed.


Author(s):  
Dariusz Chruściński ◽  
Ryohei Fujii ◽  
Gen Kimura ◽  
Hiromichi Ohno

2021 ◽  
Vol 127 (5) ◽  
Author(s):  
Dariusz Chruściński ◽  
Gen Kimura ◽  
Andrzej Kossakowski ◽  
Yasuhito Shishido

Author(s):  
Simon Becker ◽  
Nilanjana Datta ◽  
Robert Salzmann

AbstractWe prove the quantum Zeno effect in open quantum systems whose evolution, governed by quantum dynamical semigroups, is repeatedly and frequently interrupted by the action of a quantum operation. For the case of a quantum dynamical semigroup with a bounded generator, our analysis leads to a refinement of existing results and extends them to a larger class of quantum operations. We also prove the existence of a novel strong quantum Zeno limit for quantum operations for which a certain spectral gap assumption, which all previous results relied on, is lifted. The quantum operations are instead required to satisfy a weaker property of strong power-convergence. In addition, we establish, for the first time, the existence of a quantum Zeno limit for open quantum systems in the case of unbounded generators. We also provide a variety of physically interesting examples of quantum operations to which our results apply.


PRX Quantum ◽  
2021 ◽  
Vol 2 (2) ◽  
Author(s):  
Xiang-Long Yu ◽  
Wentao Ji ◽  
Lin Zhang ◽  
Ya Wang ◽  
Jiansheng Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document