Stochastic electrodynamics. III. Statistics of the perturbed harmonic oscillator-zero-point field system

1983 ◽  
Vol 13 (12) ◽  
pp. 1195-1220 ◽  
Author(s):  
G. H. Goedecke
2007 ◽  
Vol 07 (03) ◽  
pp. L193-L207 ◽  
Author(s):  
GIANCARLO CAVALLERI ◽  
ERNESTO TONNI ◽  
LEONARDO BOSI ◽  
GIANFRANCO SPAVIERI

The Boltzmann equation with electron-electron (e − e) interactions has been reduced to a Fokker-Planck equation (e − e FP ) in a previuos paper. In steady-state conditions, its solution q0(v) (where v is the electron speed) depends on the square of the acceleration a = eE/m. If we introduce the nonrenormalized zero-point field (ZPF) of QED, i.e., the one considered in stochastic electrodynamics, so that [Formula: see text], then q0(v) becomes similar to the Fermi-Dirac equation, and the two collision frequencies ν1(v) and ν2(v) appearing in the e − e FP become both proportional to 1/v in a small δv interval. The condition ν1(v) ∝ ν2(v) ∝ 1/v is at the threshold of the runaways. In the same δv range, the time-dependent solution q0(v,τ) of the e − e FP decays no longer exponentially but according to a power law ∝ τ− ɛ where 0.004 < ɛ < 0.006, until τ → ∞. That extremely long memory of a fluctuation implies the same dependence τ − ɛ for the conductance correlation function, hence a corresponding power-spectral noise S(f) ∝ fɛ−1 where f is the frequency. That behaviour is maintained even for a small sample because the back diffusion velocity of the electrons in the effective range δv, where they are in runaway conditions, is much larger than the drift velocity.


Atoms ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 51 ◽  
Author(s):  
Garret Moddel ◽  
Olga Dmitriyeva

In research articles and patents several methods have been proposed for the extraction of zero-point energy from the vacuum. None of the proposals have been reliably demonstrated, yet they remain largely unchallenged. In this paper the underlying thermodynamics principles of equilibrium, detailed balance, and conservation laws are presented for zero-point energy extraction. The proposed methods are separated into three classes: nonlinear processing of the zero-point field, mechanical extraction using Casimir cavities, and the pumping of atoms through Casimir cavities. The first two approaches are shown to violate thermodynamics principles, and therefore appear not to be feasible, no matter how innovative their execution. The third approach, based upon stochastic electrodynamics, does not appear to violate these principles, but may face other obstacles. Initial experimental results are tantalizing but, given the lower than expected power output, inconclusive.


2013 ◽  
Vol 2013 ◽  
pp. 1-19 ◽  
Author(s):  
Wayne Cheng-Wei Huang ◽  
Herman Batelaan

Stochastic electrodynamics (SED) predicts a Gaussian probability distribution for a classical harmonic oscillator in the vacuum field. This probability distribution is identical to that of the ground state quantum harmonic oscillator. Thus, the Heisenberg minimum uncertainty relation is recovered in SED. To understand the dynamics that give rise to the uncertainty relation and the Gaussian probability distribution, we perform a numerical simulation and follow the motion of the oscillator. The dynamical information obtained through the simulation provides insight to the connection between the classic double-peak probability distribution and the Gaussian probability distribution. A main objective for SED research is to establish to what extent the results of quantum mechanics can be obtained. The present simulation method can be applied to other physical systems, and it may assist in evaluating the validity range of SED.


1984 ◽  
Vol 62 (8) ◽  
pp. 805-810 ◽  
Author(s):  
I. Brevik ◽  
H. Kolbenstvedt

The radial and azimuthal stress components of the electromagnetic zero-point field are calculated inside and outside a spherical surface dividing two media of permeabilities μ1 and μ2. The corresponding permittivities ε1 and ε2 are such that εμ = 1 everywhere. Schwinger's source theory is used. In the inside region all stress components are negative, corresponding to a negative pressure. In the outside region the signs of the angular stress components are reversed, similar to the case for the energy density.


Sign in / Sign up

Export Citation Format

Share Document