nonlinear processing
Recently Published Documents


TOTAL DOCUMENTS

160
(FIVE YEARS 23)

H-INDEX

21
(FIVE YEARS 2)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Nihan Alp ◽  
Huseyin Ozkan

AbstractIntegrating the spatiotemporal information acquired from the highly dynamic world around us is essential to navigate, reason, and decide properly. Although this is particularly important in a face-to-face conversation, very little research to date has specifically examined the neural correlates of temporal integration in dynamic face perception. Here we present statistically robust observations regarding the brain activations measured via electroencephalography (EEG) that are specific to the temporal integration. To that end, we generate videos of neutral faces of individuals and non-face objects, modulate the contrast of the even and odd frames at two specific frequencies ($$f_1$$ f 1 and $$f_2$$ f 2 ) in an interlaced manner, and measure the steady-state visual evoked potential as participants view the videos. Then, we analyze the intermodulation components (IMs: ($$nf_1\pm mf_2$$ n f 1 ± m f 2 ), a linear combination of the fundamentals with integer multipliers) that consequently reflect the nonlinear processing and indicate temporal integration by design. We show that electrodes around the medial temporal, inferior, and medial frontal areas respond strongly and selectively when viewing dynamic faces, which manifests the essential processes underlying our ability to perceive and understand our social world. The generation of IMs is only possible if even and odd frames are processed in succession and integrated temporally, therefore, the strong IMs in our frequency spectrum analysis show that the time between frames (1/60 s) is sufficient for temporal integration.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260977
Author(s):  
Junjun Wei ◽  
Kejun Long ◽  
Jian Gu ◽  
Zhengchuan Zhou ◽  
Shun Li

Ramp metering on freeway is one of the effective methods to alleviate traffic congestion. This paper advances the field of freeway ramp metering by introducing an application to the on-ramp, capitalizing on the macro traffic follow theory and improved the freeway traffic flow. The Particle Swarm Optimization (PSO) based on Proportional Integral Derivative (PID) controller is further developed to single ramp metering as well as to optimize the PID parameters. The approach is applied to a case study of the Changyi Freeway(G5513) in Hunan, China. The simulation is conducted by applying the actual profile traffic data to PID controller to adjust the entering traffic flow on the freeway on-ramp. The results show that the PSO-PID controller tends to converge in about 80 minutes, and the density tends to be stable after 240 iterations. The system has smaller oscillation, more accurate adjustment of ramp regulation rate, and more ideal expected traffic flow density. The traffic congestion on mainline is effectively slowed down, traffic efficiency is improved, and travel time and cost are reduced. The nonlinear processing ability of PSO-PID controller overcomes the defects of the traditional manual closing ramp, and can be successfully applied in the field of intelligent ramp metering.


Author(s):  
Xie Changgui ◽  
Xu Hao ◽  
Liu Yuxi ◽  
Chen Ping

A new method for image-defect recognition is proposed that is based on a convolution network with repeated stacking of small convolution kernels and a maximum pooling layer. By improving the speed and accuracy of image-defect recognition, this new method can be applied to image recognition such as heavy-rail images with high noise and many types of defects. The experimental results showed that the new algorithm effectively improved the accuracy of heavy-rail image-defect recognition. As evidenced by the simulation study, the proposed method has a lower error rate in heavy-rail image recognition than traditional algorithms, and the method may also be applied to defect recognition of nonlinear images under strong noise conditions. Its robustness and nonlinear processing ability are impressive, and the method is featured with high theoretical depth and important application value.


2021 ◽  
pp. 1-26
Author(s):  
Marifi Güler

The transformation of synaptic input into action potential in nerve cells is strongly influenced by the morphology of the dendritic arbor as well as the synaptic efficacy map. The multiplicity of dendritic branches strikingly enables a single cell to act as a highly nonlinear processing element. Studies have also found functional synaptic clustering whereby synapses that encode a common sensory feature are spatially clustered together on the branches. Motivated by these findings, here we introduce a multibranch formal model of the neuron that can integrate synaptic inputs nonlinearly through collective action of its dendritic branches and yields synaptic clustering. An analysis in support of its use as a computational building block is offered. Also offered is an accompanying gradient descent–based learning algorithm. The model unit spans a wide spectrum of nonlinearities, including the parity problem, and can outperform the multilayer perceptron in generalizing to unseen data. The occurrence of synaptic clustering boosts the generalization efficiency of the unit, which may also be the answer for the puzzling ubiquity of synaptic clustering in the real neurons. Our theoretical analysis is backed up by simulations. The study could pave the way to new artificial neural networks.


2021 ◽  
Author(s):  
Ali Almasi ◽  
Shi Hai Sun ◽  
Molis Yunzab ◽  
Young Jun Jung ◽  
Hamish Meffin ◽  
...  

AbstractWe studied the changes that neuronal RF models undergo when the statistics of the stimulus are changed from those of white Gaussian noise (WGN) to those of natural scenes (NS). Fitting the model to data estimates both a cascade of linear filters on the stimulus, as wells as the static nonlinearities that map the output of the filters to the neuronal spike rates. We found that cells respond differently to these two classes of stimuli, with mostly higher spike rates and shorter response latencies to NS than to WGN. The most striking finding was that NS resulted in RFs that had additional uncovered filters than did WGN. This finding was not an artefact of the higher spike rates but rather related to a change in coding. Our results reveal a greater extent of nonlinear processing in V1 neurons when stimulated using NS compared to WGN. Our findings indicate the existence of nonlinear mechanisms that endow V1 neurons with context-dependent transmission of visual information.


Author(s):  
Yan Pan ◽  
Fabing Duan ◽  
François Chapeau-Blondeau ◽  
Liyan Xu ◽  
Derek Abbott

Vibrational resonance (VR) intentionally applies high-frequency periodic vibrations to a nonlinear system, in order to obtain enhanced efficiency for a number of information processing tasks. Note that VR is analogous to stochastic resonance where enhanced processing is sought via purposeful addition of a random noise instead of deterministic high-frequency vibrations. Comparatively, due to its ease of implementation, VR provides a valuable approach for nonlinear signal processing, through detailed modalities that are still under investigation. In this paper, VR is investigated in arrays of nonlinear processing devices, where a range of high-frequency sinusoidal vibrations of the same amplitude at different frequencies are injected and shown capable of enhancing the efficiency for estimating unknown signal parameters or for detecting weak signals in noise. In addition, it is observed that high-frequency vibrations with differing frequencies can be considered, at the sampling times, as independent random variables. This property allows us here to develop a probabilistic analysis—much like in stochastic resonance—and to obtain a theoretical basis for the VR effect and its optimization for signal processing. These results provide additional insight for controlling the capabilities of VR for nonlinear signal processing. This article is part of the theme issue ‘Vibrational and stochastic resonance in driven nonlinear systems (part 1)’.


2021 ◽  
Vol 25 ◽  
pp. 233121652097802
Author(s):  
Emmanuel Ponsot ◽  
Léo Varnet ◽  
Nicolas Wallaert ◽  
Elza Daoud ◽  
Shihab A. Shamma ◽  
...  

Spectrotemporal modulations (STM) are essential features of speech signals that make them intelligible. While their encoding has been widely investigated in neurophysiology, we still lack a full understanding of how STMs are processed at the behavioral level and how cochlear hearing loss impacts this processing. Here, we introduce a novel methodological framework based on psychophysical reverse correlation deployed in the modulation space to characterize the mechanisms underlying STM detection in noise. We derive perceptual filters for young normal-hearing and older hearing-impaired individuals performing a detection task of an elementary target STM (a given product of temporal and spectral modulations) embedded in other masking STMs. Analyzed with computational tools, our data show that both groups rely on a comparable linear (band-pass)–nonlinear processing cascade, which can be well accounted for by a temporal modulation filter bank model combined with cross-correlation against the target representation. Our results also suggest that the modulation mistuning observed for the hearing-impaired group results primarily from broader cochlear filters. Yet, we find idiosyncratic behaviors that cannot be captured by cochlear tuning alone, highlighting the need to consider variability originating from additional mechanisms. Overall, this integrated experimental-computational approach offers a principled way to assess suprathreshold processing distortions in each individual and could thus be used to further investigate interindividual differences in speech intelligibility.


2020 ◽  
Author(s):  
Damián Dellavale ◽  
Osvaldo Matías Velarde ◽  
Germán Mato ◽  
Eugenio Urdapilleta

AbstractBackgroundCross-frequency coupling (CFC) refers to the non linear interaction between oscillations in different frequency bands, and it is a rather ubiquitous phenomenon that has been observed in a variety of physical and biophysical systems. In particular, the coupling between the phase of slow oscillations and the amplitude of fast oscillations, referred as phase-amplitude coupling (PAC), has been intensively explored in the brain activity recorded from animals and humans. However, the interpretation of these CFC patterns remains challenging since harmonic spectral correlations characterizing non sinusoidal oscillatory dynamics can act as a confounding factor.MethodsSpecialized signal processing techniques are proposed to address the complex interplay between spectral harmonicity and different types of CFC, not restricted only to PAC. For this, we provide an in-depth characterization of the Time Locked Index (TLI) as a novel tool aimed to efficiently quantify the harmonic content of noisy time series. It is shown that the proposed TLI measure is more robust and outperform traditional phase coherence metrics (e.g. Phase Locking Value, Pairwise Phase Consistency) in several aspects.ResultsWe found that a non linear oscillator under the effect of additive noise can produce spurious CFC with low spectral harmonic content. On the other hand, two coupled oscillatory dynamics with independent fundamental frequencies can produce true CFC with high spectral harmonic content via a rectification mechanism or other post-interaction nonlinear processing mechanisms. These results reveal a complex interplay between CFC and harmonicity emerging in the dynamics of biologically plausible neural network models and more generic non linear and parametric oscillators.ConclusionsWe show that, contrary to what is usually assumed in the literature, the high harmonic content observed in non sinusoidal oscillatory dynamics, is neither sufficient nor necessary condition to interpret the associated CFC patterns as epiphenomenal. There is mounting evidence suggesting that the combination of multimodal recordings, specialized signal processing techniques and theoretical modeling is becoming a required step to completely understand CFC patterns observed in oscillatory rich dynamics of physical and biophysical systems.HighlightsTime locked index efficiently quantifies the harmonic content of noisy time series.A non linear oscillator under the effect of additive noise can produce spurious cross frequency couplings (CFC) with low spectral harmonic content.Two coupled oscillatory dynamics with independent fundamental frequencies can produce true CFC with high spectral harmonic content via rectification mechanisms or other post-interaction nonlinear processing mechanisms.A non sinusoidal oscillatory dynamics with high harmonic content is neither sufficient nor necessary condition for spurious CFC.A complex interplay between CFC and harmonicity emerges from the dynamics of nonlinear, parametric and biologically plausible oscillators.


Sign in / Sign up

Export Citation Format

Share Document