Virial theorem and the chemical bond phenomenon

1992 ◽  
Vol 33 (3) ◽  
pp. 335-342 ◽  
Author(s):  
D. V. Korol'kov

1989 ◽  
Vol 86 ◽  
pp. 853-859 ◽  
Author(s):  
Federico Moscardó ◽  
José Pérez-Jordá ◽  
Emilio San-Fabián


1979 ◽  
Vol 128 (5) ◽  
pp. 161
Author(s):  
Vitalii D. Shafranov


2020 ◽  
Author(s):  
Gabriel Freire Sanzovo Fernandes ◽  
Leonardo dos Anjos Cunha ◽  
Francisco Bolivar Correto Machado ◽  
Luiz Ferrão

<p>Chemical bond plays a central role in the description of the physicochemical properties of molecules and solids and it is essential to several fields in science and engineering, governing the material’s mechanical, electrical, catalytic and optoelectronic properties, among others. Due to this indisputable importance, a proper description of chemical bond is needed, commonly obtained through solving the Schrödinger equation of the system with either molecular orbital theory (molecules) or band theory (solids). However, connecting these seemingly different concepts is not a straightforward task for students and there is a gap in the available textbooks concerning this subject. This work presents a chemical content to be added in the physical chemistry undergraduate courses, in which the framework of molecular orbitals was used to qualitatively explain the standard state of the chemical elements and some properties of the resulting material, such as gas or crystalline solids. Here in Part 1, we were able to show the transition from Van der Waals clusters to metal in alkali and alkaline earth systems. In Part 2 and 3 of this three-part work, the present framework is applied to main group elements and transition metals. The original content discussed here can be adapted and incorporated in undergraduate and graduate physical chemistry and/or materials science textbooks and also serves as a conceptual guide to subsequent disciplines such as quantum chemistry, quantum mechanics and solid-state physics.</p>



2019 ◽  
Author(s):  
Volodymyr Bezverkhniy ◽  
Vitaliy Bezverkhniy


1983 ◽  
Vol 100 ◽  
pp. 391-399 ◽  
Author(s):  
S. Michael Fall

Before theoretical ideas in this subject can be compared with observational data, it is necessary to consider the properties of galaxies that are likely to be relics of their formation. Most astronomers would agree that the list of important parameters should be headed by the total mass M, energy E and angular momentum J. Next on the list should probably be the relative contributions to these quantities from the disc and bulge components of galaxies and denoted D/B for the mass ratio. They can be estimated from the median (i.e. half-mass) radius R, velocity dispersion σ and rotation velocity v of each component, either through the virial theorem or through the luminosity L and an assumed value of M/L. As a first approximation, it is reasonable to suppose that galaxies of a given disc-to-bulge ratio or morphological type form a sequence with mass as the fundamental parameter. The comparison of theory with data is further simplified by considering the extreme cases of ellipticals, with D/B << 1, and late-type spirals, with D/B >> 1. The approach outlined below is to explore the consequences of relaxing in succession the constraints that E, J and M be conserved during the collapse of proto-galaxies. In this article I concentrate on theories that are based on some form of hierarchical clustering because the pancake and related theories are not yet refined enough for a detailed confrontation with observations.



2008 ◽  
Vol 870 (1-3) ◽  
pp. 1-9 ◽  
Author(s):  
Olga V. Sizova ◽  
Leonid V. Skripnikov ◽  
Alexander Yu. Sokolov


Sign in / Sign up

Export Citation Format

Share Document