Effect of the third invariant of the stress deviator on the long-time strength of a material in a plane stressed state

1982 ◽  
Vol 14 (6) ◽  
pp. 773-775
Author(s):  
T. N. Mozharovskaya
2011 ◽  
Vol 243-249 ◽  
pp. 2183-2187
Author(s):  
Jun Xin Liu ◽  
Zhong Fu Chen ◽  
Wei Fang Xu

For soils, failure occurs with lower deviatoric stress under the same pressure (the first invariant of stress tensor) in TXE compared with the strength of the triaxial compression, which is indicated that the strength of soils strongly depends on the third invariant of stress deviator; Although in the traditional Mohr-Coulomb criterion it can be reflected in difference of strength between triaxial extension and compression under the same pressure, it’s nothing to do with the pressure for the strength ratio between triaxial extension and compression. By TXC and TXE, changes of deviatoric stress and the ratio with the pressure were studied


1982 ◽  
Vol 14 (4) ◽  
pp. 560-565
Author(s):  
G. S. Pisarenko ◽  
A. P. Voloshchenko ◽  
V. K. Lukashev ◽  
Yu. A. Kuzema ◽  
M. M. Aleksyuk ◽  
...  

Author(s):  
A. V. Romanov ◽  
P. V. Fernati

The problem on the influence of stressed state on the process of long-term deformation of nonlinear viscoelastic materials under the simple and quasi-simple modes of loading by introduction of the function with the parameter of Lode angle into the defining equations is considered. The mentioned function is determined by analysis of base experimental data obtained from the base experiments on axial tension and pure torsion. Physical and mechanical properties of nonlinear viscoelastic solids are defined by the correspondence between the invariants of deformation tensors and tensions according to the modified nonlinear Rabotnov’s model for viscoelasticity. The heredity kernels are given by the fractional-exponential function. The constructed defining equations are verified experimentally for the problems of determination of nonlinear creep deformations under combined loading applied to the thin-walled tubular elements made of polyethylene of high density and low pressure polyethylene. As a result of juxtaposition of experimental data and calculations it is a stated that allowing for the type of stressed state improves their agreement qualitatively and quantitatively.


2021 ◽  
Author(s):  
Jose Rodriguez-Martinez ◽  
Oana Cazacu ◽  
Nitin Chandola ◽  
Komi Espoir N'souglo

In this paper, we have investigated the effect of the third invariant of the stress deviator on the formation of necking instabilities in isotropic metallic plates subjected to plane strain tension. For that purpose, we have performed finite element calculations and linear stability analysis for initial equivalent strain rates ranging from 10^−4 s−1 to 8 · 10^4 s−1. The plastic behavior of the material has been escribed with the isotropic Drucker yield criterion [11], which depends on both the second and third invariant of the stress deviator, and a parameter c which determines the ratio between the yield stresses in uniaxial tension and in pure shear \sigma_T /\tau_Y . For c = 0, Drucker yield criterion [11] reduces to the von Mises yield criterion [32] while for c = 81/66, the Hershey-Hosford (m = 6) yield criterion [19, 22] is recovered. The results obtained with both finite element calculations and linear stability analysis show the same overall trends and there is also quantitative agreement for most of the loading rates considered. In the quasi-static regime, while the specimen elongation when necking occurs is virtually insensitive to the value of the parameter c, both finite element results and analytical calculations using Considère criterion [10] show that the necking strain increases as the parameter c decreases, bringing out the effect of the third invariant of the stress deviator on the formation of quasi-static necks. In contrast, at high initial equivalent strain rates, when the influence of inertia on the necking process becomes important, both finite element simulations and linear stability analysis show that the effect of the third invariant is reversed, notably for long necking wavelengths, with the specimen elongation when necking occurs increasing as the parameter c increases, and the necking strain decreasing as the parameter c decreases.


2021 ◽  
Vol 21 (1) ◽  
pp. 22-31
Author(s):  
A. M. Artemov ◽  
E. S. Baranovskii ◽  
A. A. Verlin ◽  
E. V. Syomka

Introduction. Cylindrical and spherical shells are extensively used in engineering. They face internal and/or external pressure and heat. Stresses and strains distribution in elastoplastic shells has been studied by many scientists. Numerous works involve the use of the von Mises yield conditions, maximum shear stress, maximum reduced stress. These condi- tions do not include the dependence on the first invariant of the stress tensor and the sign of the third invariant of the stress deviator. In some cases, it is possible to obtain numerical-analytical solutions for stresses, displacements and de- formations for bodies with spherical and cylindrical symmetry under axisymmetric thermal and force action.Materials and Methods. The problem on the state of a thick-walled elastoplastic shell is solved within the framework of the theory of small deformations. A plasticity condition is proposed, which takes into account the dependence of the stress tensor on three independent invariants, and also considers the sign of the third invariant of the stress deviator and translational hardening of the material. A disconnected thermoelastoplastic problem is being solved. To estimate the stresses in the region of the elastic state of a spherical shell, an equivalent stress is introduced, which is similar to the selected plasticity function. The construction of the stress vector hodograph is used as a method for verification of the stress state.Results. The problem has an analytical solution for linear plasticity functions. A solution is obtained when the strength- ening of the material is taken into account. Analytical and graphical relationships between the parameters of external action for the elastic or elastoplastic states of the sphere are determined. For a combined load, variants are possible when the plastic region is generated at the inner and outer boundaries of the sphere or between these boundaries.Discussion and Conclusions. The calculation results have shown that taking into account the plastic compressibility and the dependence of the plastic limit on temperature can have a significant impact on the stress and strain state of a hollow sphere. In this case, taking into account the first invariant of the stress tensor under the plasticity condition leads to the fact that not only the pressure drop between the outer and inner boundaries of the spherical shell, but the pressure values at these boundaries, can vary within a limited range. In this formulation of the problem, when there is only thermal action, the hollow sphere does not completely pass into the plastic state. The research results provide predicting the behavior of an object (a hollow sphere) that experiences centrally symmetric distributed power and thermal external influences.


Sign in / Sign up

Export Citation Format

Share Document