Succinate dehydrogenase activity of isolated myocardial mitochondria in chronic heart failure

1976 ◽  
Vol 81 (1) ◽  
pp. 45-48 ◽  
Author(s):  
N. N. Kleimenova ◽  
O. E. Kolesova ◽  
Yu. S. Chechulin
1995 ◽  
Vol 79 (2) ◽  
pp. 389-397 ◽  
Author(s):  
S. Howell ◽  
J. M. Maarek ◽  
M. Fournier ◽  
K. Sullivan ◽  
W. Z. Zhan ◽  
...  

Diaphragm and latissimus dorsi muscle functions, histochemistries, and morphometries were studied in anesthetized male Yucatan minipigs with congestive heart failure (CHF) induced by supraventricular tachycardia (n = 5). Sham-operated animals served as a control group (n = 5). In CHF animals, transdiaphragmatic pressure measured during supramaximal phrenic stimulation was reduced by 40% at low frequencies (< or = 20 Hz) and by 60% at higher frequencies. Twitch amplitude and half-relaxation time were also decreased. The cross-sectional areas of type I, IIa, and IIb fibers were reduced in the diaphragm. The proportion of type I fibers increased, whereas type IIa fibers decreased. Succinate dehydrogenase activity was elevated in type IIa and IIb fibers, but diaphragmatic fatigability was not altered. CHF reduced latissimus dorsi isometric force by 40% for stimulation frequencies > or = 30 Hz. The cross-sectional area of latissimus dorsi type IIb fibers was decreased, but twitch characteristics, fiber type composition, succinate dehydrogenase activity, and fatigability were unchanged. Experimental CHF appears to cause greater intrinsic adaptive changes in the diaphragm compared with those in the latissimus dorsi in the minipig. For both muscles, reduced contractile function was associated with atrophy. Impaired performance of the diaphragm may also be attributed to an increase in the relative contribution of type I fibers to the total tension-generating capacity of the muscle and to the pathophysiological mechanisms underlying the shortened relaxation time of the twitch response.


1994 ◽  
Vol 77 (2) ◽  
pp. 947-955 ◽  
Author(s):  
M. I. Lewis ◽  
S. A. Monn ◽  
W. Z. Zhan ◽  
G. C. Sieck

Interactive effects of emphysema (EMP) and prolonged nutritional deprivation (ND) on contractile, morphometric, and metabolic properties of hamster diaphragm muscle (DIA) were examined. Six months after induction of EMP (intratracheal elastase), saline-treated controls (CTL) and EMP hamsters of similar body weights were subjected to ND over 6 wk. Isometric contractile and fatigue properties of costal DIA were determined in vitro. DIA fibers were histochemically classified as type I or II, and fiber succinate dehydrogenase activity and cross-sectional area were determined using quantitative microscopic procedures. From histochemical sections, the number of capillaries per fiber (C/F) and per fiber cross-sectional area (C/A) were determined. ND resulted in progressive loss of body weight (ND-CTL, 23.8%; ND-EMP, 28.4%; P = NS). ND did not affect reduction in optimal length (Lo) of DIA fibers in EMP compared with CTL and ND-CTL hamsters. Maximum specific force (i.e., force/unit area) was reduced by approximately 25% in EMP animals compared with CTL. ND did not improve or exacerbate the reduction in specific force with EMP. ND attenuated improved fatigue resistance of DIA in EMP animals. No differences in fiber type proportions were noted among experimental groups. Significant atrophy of type I and II DIA fibers was noted after ND. Atrophy was proportionately greater in type II fibers of ND-EMP when referenced to EMP animals. Thus adaptive hypertrophy of type II DIA fibers in EMP animals was abolished. Fiber succinate dehydrogenase activity was significantly increased in type I and II fibers in EMP DIA. ND did not affect this metabolic adaptation of DIA fibers to persistent loads imposed by EMP.(ABSTRACT TRUNCATED AT 250 WORDS)


1984 ◽  
Vol 62 (2) ◽  
pp. 235-240 ◽  
Author(s):  
H. J. Swatland

Samples of iliotibialis anterior and pectoralis muscles were taken from five ganders (Anser domesticus). Serial transverse sections were reacted for succinate dehydrogenase (SDH) and alkali-stable adenosine triphosphatase (ATPase). The distribution of SDH activity within individual muscle fibers was measured with a scanning photometer. In many individual fibers, SDH activity was stronger in the periphery than in the axis. This gradient was steepest (−0.034 ± 0.019 absorbance units per concentric zone of 2 μm diameter measurements) in pectoralis fibers with strong SDH activity. In the pectoralis, radial gradients were correlated with fiber area so that the smallest fibers tended to have the steepest gradients of SDH activity. However, this relationship was reversed in fibers with strong ATPase and weak SDH activity in the iliotibialis anterior, and the largest fibers tended to have the steepest gradients. In all fiber types of both muscles, fibers with greater mean SDH activity tended to have steeper gradients.


Sign in / Sign up

Export Citation Format

Share Document