Errors in angle transfer with a universal joint

1981 ◽  
Vol 24 (11) ◽  
pp. 954-957
Author(s):  
B. N. Ivanov
Keyword(s):  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Markus Greinwald ◽  
Emily K. Bliven ◽  
Alex Trompeter ◽  
Peter Augat

Abstract Hexapod-ring-fixators have a characteristic rattling sound during load changes due to play in the hexapod struts. This play is perceived as unpleasant by patients and can lead to frame instability. Using slotted-ball-instead of universal-joints for the ring-strut connection could potentially resolve this problem. The purpose of the study was to clarify if the use of slotted-ball-joints reduces play and also fracture gap movement. A hexapod-fixator with slotted-ball-joints and aluminum struts (Ball-Al) was compared to universal-joint-fixators with either aluminum (Uni Al) or steel struts (Uni Steel). Six fixator frames each were loaded in tension, compression, torsion, bending and shear and mechanical performance was analyzed in terms of movement, stiffness and play. The slotted-ball-joint fixator was the only system without measurable axial play (<0.01 mm) compared to Uni-Al (1.2 ± 0.1) mm and Uni-Steel (0.6 ± 0.2) mm (p≤0.001). In both shear directions the Uni-Al had the largest play (p≤0.014). The resulting axial fracture gap movements were similar for the two aluminum frames and up to 25% smaller for the steel frame, mainly due to the highest stiffness found for the Uni-Steel in all loading scenarios (p≤0.036). However, the Uni-Steel construct was also up to 29% (450 g) heavier and had fewer usable mounting holes. In conclusion, the slotted-ball-joints of the Ball-Al fixator reduced play and minimized shear movement in the fracture while maintaining low weight of the construct. The heavier and stiffer Uni-Steel fixator compensates for existing play with a higher overall stiffness.


2021 ◽  
Vol 687 (1) ◽  
pp. 012117
Author(s):  
Ma Jun ◽  
Shi Yonggang ◽  
Dong Gang ◽  
Gong Fuxing ◽  
Wang Zhu ◽  
...  

Author(s):  
J. L. Cagney ◽  
S. S. Rao

Abstract The modeling of manufacturing errors in mechanisms is a significant task to validate practical designs. The use of probability distributions for errors can simulate manufacturing variations and real world operations. This paper presents the mechanical error analysis of universal joint drivelines. Each error is simulated using a probability distribution, i.e., a design of the mechanism is created by assigning random values to the errors. Each design is then evaluated by comparing the output error with a limiting value and the reliability of the universal joint is estimated. For this, the design is considered a failure whenever the output error exceeds the specified limit. In addition, the problem of synthesis, which involves the allocation of tolerances (errors) for minimum manufacturing cost without violating a specified accuracy requirement of the output, is also considered. Three probability distributions — normal, Weibull and beta distributions — were used to simulate the random values of the errors. The similarity of the results given by the three distributions suggests that the use of normal distribution would be acceptable for modeling the tolerances in most cases.


2015 ◽  
Vol 137 (5) ◽  
Author(s):  
Feibo Wang ◽  
Qiaohong Chen ◽  
Qinchuan Li

This paper investigates dimensional optimization of a 2-UPR-RPU parallel manipulator (where U is a universal joint, P a prismatic pair, and R a revolute pair). First, the kinematics and screws of the mechanism are analyzed. Then, three indices developed from motion/force transmission are proposed to evaluate the performance of the 2-UPR-RPU parallel manipulator. Based on the performance atlases obtained, a set of optimal parameters are selected from the optimum region within the parameter design space. Finally, the optimized parameters are determined for practical applications.


2020 ◽  
Author(s):  
Chen Zhao ◽  
Jingke Song ◽  
Xuechan Chen ◽  
Ziming Chen ◽  
Huafeng Ding

Abstract This paper focuses on a 2R1T 3-UPU (U for universal joint and P for prismatic joint) parallel mechanism (PM) with two rotational and one translational (2R1T) degrees of freedom (DOFs) and the ability of multiple remote centers of motion (M-RCM). The singularity analysis based on the indexes of motion/force transmissibility and constraint shows that this PM has transmission singularity, constraint singularity, mixed singularity and limb singularity. To solve these singularproblems, the quantifiable redundancy transmission index (RTI) and the redundancy constraint index (RCI) are proposed for optimum seeking of redundant actuators for this PM. Then the appropriate redundant actuators are selected and the working scheme for redundant actuators near the corresponding singular configuration are given to help the PM go through the singularity.


1995 ◽  
Vol 61 (581) ◽  
pp. 9-14
Author(s):  
Kazuki Mizutani ◽  
Sigekazu Kitamura ◽  
Fen Lu Zhang
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document