Maximum error in reproducing and transmitting the unit dimension of an absorbed neutron-radiation dose

1981 ◽  
Vol 24 (4) ◽  
pp. 320-323
Author(s):  
A. V. Marchenko ◽  
P. F. Maslyaev
2010 ◽  
Vol 46 (9) ◽  
pp. 650 ◽  
Author(s):  
Y. Guhel ◽  
B. Boudart ◽  
C. Gaquiere ◽  
N. Vellas ◽  
J.L. Trolet ◽  
...  

Author(s):  
Oleg A. Kozin ◽  
Tatiana A. Kulagina

The article describes and proves the possibility of increasing the protection against neutron radiation for personnel by means of immersion liquid without major changes in the design of the equipment used and without reducing the safety of the radiation object. Studies of the components properties of the protection glass and the immersion liquid have shown that the properties of the immersion liquid reduce the dose rate of neutron radiation significantly compared to the protection glass, which is used for the main protection against ionizing radiation when working with uranium-plutonium fuels. The use of two-layer protection in viewing windows allows reducing the dose rate of mixed gamma-neutron radiation to values that do not exceed the safe radiation dose for personnel when working with an ionizing radiation source, which in this case is 50 kg of uranium-plutonium fuel


2017 ◽  
Vol 19 (3) ◽  
pp. 139
Author(s):  
Gani Priambodo ◽  
Fahrudin Nugroho ◽  
Dwi Satya Palupi ◽  
Rosilatul Zailani ◽  
Yohannes Sardjono

A study to optimize a model of neutron radiation shielding for BNCT facility in the irradiation room has been performed. The collimator used in this study is a predesigned collimator from earlier studies. The model includes the selection of the materials and the thickness of materials used for radiation shield. The radiation shield is required to absorb leaking radiation in order to protect workers at the threshold dose of 20 mSv/year. The considered materials were barite concrete, paraffin, stainless steel 304 and lead. The leaking neutron radiation dose rates have been determined using Monte Carlo N Particle Version Extended (MCNPX) with a radiation dose limit rate that is less than 10 µSv/hour. This dose limit is in accordance with BAPETEN regulation related the threshold dose for workers, in which the working duration is 8 hours per day and 5 days per week. It is recommended that the best model for the irradiation room has a dimension 30 cm width, 30 cm length, 30 cm height and a main layer of irradiation room shielding made from the material paraffin which is 68 cm thickness on the left side and bottom of the irradiation room, 70 cm thickness on the right side of the iradiation room, 45 cm thickness on the front of the irradiation room and 67 cm thickness on the top of the irradiation room. The additional layers of 15 cm and 10 cm thickness are used along with paraffin in order to reduce the intensity of primary radiation from piercing the beamport after two primary layers. There is no neutron radiation leakage in this model.Keywords: Radiation shielding, BNCT, MCNPX, radiation dose rate, piercing beamport. OPTIMASI PERISAI RADIASI NEUTRON FASILITAS RUANGAN IRADIASI UNTUK BORON NEUTRON CAPTURE CANCER THERAPY (BNCT) DENGAN SUMBER BEAMPORT TEMBUS REAKTOR KARTINI. Telah dilakukan pemodelan perisai radiasi neutron untuk fasilitas Boron Neutron Capture Therapy (BNCT) pada sekeliling ruangan iradiasi. Pemodelan mencakup pemilihan bahan dan tebal yang digunakan untuk perisai radiasi. Perisai diharuskan mampu menahan radiasi yang keluar ruangan sehingga dosis radiasi berada di bawah ambang dosis bagi pekerja radiasi sebesar 20 mSv/tahun. Bahan yang dipertimbangkan adalah beton barit, paraffin, stainless steel 304 dan timbal. Perhitungan laju dosis neutron epitermal dilakukan dengan menggunakan program Monte Carlo N Particle Version Extended (MCNPX) dengan batasan laju dosis radiasi kurang dari 10 µSv/jam, sesuai dengan peraturan Kepala BAPETEN mengenai batas ambang laju dosis pekerja radiasi, dengan asumsi perhitungan waktu kerja 8 jam per hari dan 5 hari per minggu. Desain pertama dari empat desain yang telah dibuat kemudian dipilih sebagai desain yang direkomendasikan dengan laju dosis di bawah batas ambang 10 µSv/jam. Ruangan iradiasi memiliki dimensi panjang 30 cm, lebar 30 cm dan tinggi 30 cm. Lapisan utama perisai pada desain pertama berbahan paraffin setebal 68 cm pada sisi kiri dan bawah ruangan, 70 cm pada sisi kanan ruangan, 45 cm pada sisi depan ruangan dan 67 cm pada sisi atas ruangan. Paraffin setebal 15 cm dan 10 cm ditambahkan sebagai peredam intensitas radiasi primer dari beamport tembus yang masih cukup besar.Kata Kunci: perisai radiasi, BNCT, MCNPX, laju dosis radiasi, beamport tembus.


Author(s):  
R. Sharma ◽  
B.L. Ramakrishna ◽  
N.N. Thadhani ◽  
D. Hianes ◽  
Z. Iqbal

After materials with superconducting temperatures higher than liquid nitrogen have been prepared, more emphasis has been on increasing the current densities (Jc) of high Tc superconductors than finding new materials with higher transition temperatures. Different processing techniques i.e thin films, shock wave processing, neutron radiation etc. have been applied in order to increase Jc. Microstructural studies of compounds thus prepared have shown either a decrease in gram boundaries that act as weak-links or increase in defect structure that act as flux-pinning centers. We have studied shock wave synthesized Tl-Ba-Cu-O and shock wave processed Y-123 superconductors with somewhat different properties compared to those prepared by solid-state reaction. Here we report the defect structures observed in the shock-processed Y-124 superconductors.


Sign in / Sign up

Export Citation Format

Share Document