Spline variant of the finite-element method for calculating shells of complex geometry

1987 ◽  
Vol 23 (3) ◽  
pp. 238-243
Author(s):  
M. S. Kornishin ◽  
N. M. Yakupov
2010 ◽  
Vol 7 ◽  
pp. 98-108
Author(s):  
Yu.A. Gafarova

To solve problems with complex geometry it is considered the possibility of application of irregular mesh and the use of various numerical methods using them. Discrete analogues of the Beltrami-Mitchell equations are obtained by the control volume method using the rectangular grid and the finite element method of control volume using the Delaunay triangulation. The efficiency of using the Delaunay triangulation, Voronoi diagrams and the finite element method of control volume in a test case is demonstrated.


2020 ◽  
Author(s):  
Dang Quoc Vuong ◽  
Bui Minh Dinh

Modelling of realistic electromagnetic problems is presented by partial differential equations (FDEs) that link the magnetic and electric fields and their sources. Thus, the direct application of the analytic method to realistic electromagnetic problems is challenging, especially when modeling structures with complex geometry and/or magnetic parts. In order to overcome this drawback, there are a lot of numerical techniques available (e.g. the finite element method or the finite difference method) for the resolution of these PDEs. Amongst these methods, the finite element method has become the most common technique for magnetostatic and magnetodynamic problems.


2012 ◽  
Vol 446-449 ◽  
pp. 2694-2698
Author(s):  
Tae Hwa Jung

Effective numerical technique for treatment of inclined boundary in the finite element method was introduced. Finite element method was frequently used to analyze hydraulic phenomena in the coastal zone because it can be applied to irregular and complex geometry. In this study, we introduced the way to treat the boundary condition over an inclined bottom.


Nanoscale ◽  
2019 ◽  
Vol 11 (43) ◽  
pp. 20868-20875 ◽  
Author(s):  
Junxiong Guo ◽  
Yu Liu ◽  
Yuan Lin ◽  
Yu Tian ◽  
Jinxing Zhang ◽  
...  

We propose a graphene plasmonic infrared photodetector tuned by ferroelectric domains and investigate the interfacial effect using the finite element method.


Sign in / Sign up

Export Citation Format

Share Document