Coherence relaxation in diffusion of polarized resonance emission in an infinite medium with magnetic field

1976 ◽  
Vol 19 (5) ◽  
pp. 664-665
Author(s):  
V. P. Afanas'ev
1964 ◽  
Vol 54 (6A) ◽  
pp. 1771-1777
Author(s):  
D. K. Sinha

abstract In recent years, Kaliski has contributed a series of papers on the interaction of elastic and magnetic fields and some of them, [1], [2], [3] are concerned with the propagation of waves in a semi-infinite medium either loaded or conditioned otherwise, at its free surface. Such problems, as Kaliski [1] has remarked, may have relevance in the practical seismic problem of detecting the mechanical explosions inside the earth. Moreover, their geophysical implications have also been examined by Knopoff [4[, Cagniard [5], Banos [6], and Rikitake [7]. The present note seeks to investigate disturbances in a medium consisting of two layers (one finite and the other infinite) of elastic medium intervened by a thin layer of vacuum. The vacuum is traversed by an initial magnetic field. The disturbances in the medium are assumed to have been produced by a time-dependent load on the free surface of the medium. The method of Laplace transform has been used to facilitate the solution of the problem.


1967 ◽  
Vol 31 ◽  
pp. 381-383
Author(s):  
J. M. Greenberg

Van de Hulst (Paper 64, Table 1) has marked optical polarization as a questionable or marginal source of information concerning magnetic field strengths. Rather than arguing about this–I should rate this method asq+-, or quarrelling about the term ‘model-sensitive results’, I wish to stress the historical point that as recently as two years ago there were still some who questioned that optical polarization was definitely due to magnetically-oriented interstellar particles.


1967 ◽  
Vol 31 ◽  
pp. 375-380
Author(s):  
H. C. van de Hulst

Various methods of observing the galactic magnetic field are reviewed, and their results summarized. There is fair agreement about the direction of the magnetic field in the solar neighbourhood:l= 50° to 80°; the strength of the field in the disk is of the order of 10-5gauss.


1967 ◽  
Vol 31 ◽  
pp. 355-356
Author(s):  
R. D. Davies

Observations at various frequencies between 136 and 1400 MHz indicate a considerable amount of structure in the galactic disk. This result appears consistent both with measured polarization percentages and with considerations of the strength of the galactic magnetic field.


1994 ◽  
Vol 144 ◽  
pp. 559-564
Author(s):  
P. Ambrož ◽  
J. Sýkora

AbstractWe were successful in observing the solar corona during five solar eclipses (1973-1991). For the eclipse days the coronal magnetic field was calculated by extrapolation from the photosphere. Comparison of the observed and calculated coronal structures is carried out and some peculiarities of this comparison, related to the different phases of the solar cycle, are presented.


1994 ◽  
Vol 144 ◽  
pp. 339-342
Author(s):  
V. N. Dermendjiev ◽  
Z. Mouradian ◽  
J.- L. Leroy ◽  
P. Duchlev

AbstractThe relation between episodically observed in the solar corona faint Hαemission structures and the long lived prominences was studied. Particular consideration was given for cases in which the corresponding prominences had undergone DB process. An MHD interpretation of the phenomenon “emissions froides” (cool emission) is proposed in which an essential role plays the prominence supporting magnetic field.


1994 ◽  
Vol 144 ◽  
pp. 29-33
Author(s):  
P. Ambrož

AbstractThe large-scale coronal structures observed during the sporadically visible solar eclipses were compared with the numerically extrapolated field-line structures of coronal magnetic field. A characteristic relationship between the observed structures of coronal plasma and the magnetic field line configurations was determined. The long-term evolution of large scale coronal structures inferred from photospheric magnetic observations in the course of 11- and 22-year solar cycles is described.Some known parameters, such as the source surface radius, or coronal rotation rate are discussed and actually interpreted. A relation between the large-scale photospheric magnetic field evolution and the coronal structure rearrangement is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document