Stability in Liouville's theorem on conformal mappings of a space for domains with nonsmooth boundary

1976 ◽  
Vol 17 (2) ◽  
pp. 281-288 ◽  
Author(s):  
Yu. G. Reshetnyak
2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Gang Xu ◽  
Guangwei Zhao ◽  
Jing Chen ◽  
Shuqi Wang ◽  
Weichao Shi

The value of the tangential velocity on the Boundary Value Problem (BVP) is inaccurate when comparing the results with analytical solutions by Indirect Boundary Element Method (IBEM), especially at the intersection region where the normal vector is changing rapidly (named nonsmooth boundary). In this study, the singularity of the BVP, which is directly arranged in the center of the surface of the fluid computing domain, is moved outside the computational domain by using the Desingularized Boundary Integral Equation Method (DBIEM). In order to analyze the accuracy of the IBEM/DBIEM and validate the above-mentioned problem, three-dimensional uniform flow over a sphere has been presented. The convergent study of the presented model has been investigated, including desingularized distance in the DBIEM. Then, the numerical results were compared with the analytical solution. It was found that the accuracy of velocity distribution in the flow field has been greatly improved at the intersection region, which has suddenly changed the boundary surface shape of the fluid domain. The conclusions can guide the study on the flow over nonsmooth boundaries by using boundary value method.


2016 ◽  
Vol 25 (07) ◽  
pp. 1650081 ◽  
Author(s):  
Fayçal Hammad

The conformal transformation of the Misner–Sharp mass is reexamined. It has recently been found that this mass does not transform like usual masses do under conformal mappings of spacetime. We show that when it comes to conformal transformations, the widely used geometric definition of the Misner–Sharp mass is fundamentally different from the original conception of the latter. Indeed, when working within the full hydrodynamic setup that gave rise to that mass, i.e. the physics of gravitational collapse, the familiar conformal transformation of a usual mass is recovered. The case of scalar–tensor theories of gravity is also examined.


1995 ◽  
Vol 66 (1) ◽  
pp. 117-136 ◽  
Author(s):  
Makoto Masumoto
Keyword(s):  

1999 ◽  
Vol 13 (02) ◽  
pp. 161-189
Author(s):  
C. SYROS

The essentials of quantum mechanics are derived from Liouville's theorem in statistical mechanics. An elementary solution, g, of Liouville's equation helps to construct a differentiable N-particle distribution function (DF), F(g), satisfying the same equation. Reality and additivity of F(g): (i) quantize the time variable; (ii) quantize the energy variable; (iii) quantize the Maxwell–Boltzmann distribution; (iv) make F(g) observable through time-elimination; (v) produce the Planck constant; (vi) yield the black-body radiation spectrum; (vii) support chronotopology introduced axiomatically; (viii) the Schrödinger and the Klein–Gordon equations follow. Hence, quantum theory appears as a corollary of Liouville's theorem. An unknown connection is found allowing the better understanding of space-times and of these theories.


Sign in / Sign up

Export Citation Format

Share Document