Representation of the scattering amplitude by a functional integral and quasiclassical asymptotic behavior in quantum mechanics

1977 ◽  
Vol 31 (3) ◽  
pp. 479-488 ◽  
Author(s):  
A. N. Vasil'ev ◽  
A. V. Kuz'menko
Author(s):  
Jean Zinn-Justin

Functional integrals are basic tools to study first quantum mechanics (QM), and quantum field theory (QFT). The path integral formulation of QM is well suited to the study of systems with an arbitrary number of degrees of freedom. It makes a smooth transition between nonrelativistic QM and QFT possible. The Euclidean functional integral also emphasizes the deep connection between QFT and the statistical physics of systems with short-range interactions near a continuous phase transition. The path integral representation of the matrix elements of the quantum statistical operator e-β H for Hamiltonians of the simple separable form p2/2m +V(q) is derived. To the path integral corresponds a functional measure and expectation values called correlation functions, which are generalized moments, and related to quantum observables, after an analytic continuation in time. The path integral corresponding to the Euclidean action of a harmonic oscillator, to which is added a time-dependent external force, is calculated explicitly. The result is used to generate Gaussian correlation functions and also to reduce the evaluation of path integrals to perturbation theory. The path integral also provides a convenient tool to derive semi-classical approximations.


Sign in / Sign up

Export Citation Format

Share Document