Euclidean path integrals and quantum mechanics (QM)

Author(s):  
Jean Zinn-Justin

Functional integrals are basic tools to study first quantum mechanics (QM), and quantum field theory (QFT). The path integral formulation of QM is well suited to the study of systems with an arbitrary number of degrees of freedom. It makes a smooth transition between nonrelativistic QM and QFT possible. The Euclidean functional integral also emphasizes the deep connection between QFT and the statistical physics of systems with short-range interactions near a continuous phase transition. The path integral representation of the matrix elements of the quantum statistical operator e-β H for Hamiltonians of the simple separable form p2/2m +V(q) is derived. To the path integral corresponds a functional measure and expectation values called correlation functions, which are generalized moments, and related to quantum observables, after an analytic continuation in time. The path integral corresponding to the Euclidean action of a harmonic oscillator, to which is added a time-dependent external force, is calculated explicitly. The result is used to generate Gaussian correlation functions and also to reduce the evaluation of path integrals to perturbation theory. The path integral also provides a convenient tool to derive semi-classical approximations.

1997 ◽  
Vol 12 (20) ◽  
pp. 1455-1463 ◽  
Author(s):  
G. S. Djordjević ◽  
B. Dragovich

The Feynman path integral in p-adic quantum mechanics is considered. The probability amplitude [Formula: see text] for one-dimensional systems with quadratic actions is calculated in an exact form, which is the same as that in ordinary quantum mechanics.


2020 ◽  
Vol 75 (2) ◽  
pp. 131-141 ◽  
Author(s):  
Bhavya Bhatt ◽  
Manish Ram Chander ◽  
Raj Patil ◽  
Ruchira Mishra ◽  
Shlok Nahar ◽  
...  

AbstractThe measurement problem and the absence of macroscopic superposition are two foundational problems of quantum mechanics today. One possible solution is to consider the Ghirardi–Rimini–Weber (GRW) model of spontaneous localisation. Here, we describe how spontaneous localisation modifies the path integral formulation of density matrix evolution in quantum mechanics. We provide two new pedagogical derivations of the GRW propagator. We then show how the von Neumann equation and the Liouville equation for the density matrix arise in the quantum and classical limit, respectively, from the GRW path integral.


1997 ◽  
Vol 12 (32) ◽  
pp. 5775-5802 ◽  
Author(s):  
Masao Jinzenji

We calculate correlation functions of topological sigma model (A-model) on Calabi–Yau hypersurfaces in CPN-1 using torus action method. We also obtain path-integral representation of free energy of the theory coupled to gravity.


1998 ◽  
Vol 12 (08) ◽  
pp. 301-308 ◽  
Author(s):  
L. C. Botelho ◽  
E. P. da Silva ◽  
M. L. Lyra ◽  
S. B. Cavalcanti

We employ a path integral representation for the three-dimensional Schrödinger equation describing the motion of a quantum particle in a static random potential. Within a semi-classical approximation (pure phase wave function) and a one-loop order path integral evaluation, we obtain three-dimensional electron localization in the presence of static disorder and zero temperature.


2012 ◽  
Vol 26 (29) ◽  
pp. 1250143 ◽  
Author(s):  
MASAO MATSUMOTO

We develop a basic formulation of the spin (SU(2)) coherent state path integrals based not on the conventional highest or lowest weight vectors but on arbitrary fiducial vectors. The coherent states, being defined on a 3-sphere, are specified by a full set of Euler angles. They are generally considered as states without classical analogues. The overcompleteness relation holds for the states, by which we obtain the time evolution of general systems in terms of the path integral representation; the resultant Lagrangian in the action has a monopole-type term à la Balachandran et al. as well as some additional terms, both of which depend on fiducial vectors in a simple way. The process of the discrete path integrals to the continuous ones is clarified. Complex variable forms of the states and path integrals are also obtained. During the course of all steps, we emphasize the analogies and correspondences to the general canonical coherent states and path integrals that we proposed some time ago. In this paper we concentrate on the basic formulation. The physical applications as well as criteria in choosing fiducial vectors for real Lagrangians, in relation to fictitious monopoles and geometric phases, will be treated in subsequent papers separately.


2000 ◽  
Vol 14 (03) ◽  
pp. 73-78 ◽  
Author(s):  
LUIZ C. L. BOTELHO

We show that Nelson's stochastic mechanics suitably formulated as a Hamilton–Jacobi first-order equation leads straightforwardly to the Feynman path integral formulation of quantum mechanics.


2021 ◽  
Author(s):  
Jianhao M. Yang

Abstract Relational formulation of quantum mechanics is based on the idea that relational properties among quantum systems, instead of the independent properties of a quantum system, are the most fundamental elements to construct quantum mechanics. In the recent works (J. M. Yang, Sci. Rep. 8:13305, 2018), basic relational quantum mechanics framework is formulated to derive quantum probability, Born's Rule, Schr\"{o}dinger Equations, and measurement theory. This paper gives a concrete implementation of the relational probability amplitude by extending the path integral formulation. The implementation not only clarifies the physical meaning of the relational probability amplitude, but also gives several important applications. For instance, the double slit experiment can be elegantly explained. A path integral representation of the reduced density matrix of the observed system can be derived. Such representation is shown valuable to describe the interaction history of the measured system and a series of measuring systems. More interestingly, it allows us to develop a method to calculate entanglement entropy based on path integral and influence functional. Criteria of entanglement is proposed based on the properties of influence functional, which may be used to determine entanglement due to interaction between a quantum system and a classical field.


1989 ◽  
Vol 04 (24) ◽  
pp. 2329-2337 ◽  
Author(s):  
H. KLEINERT

We point out that there is a natural geometric procedure for constructing the quantum theory of a particle in a general metric-affine space with curvature and torsion. Quantization rules are presented and expressed in the form of a simple path integral formula which specifies compactly a new combined equivalence and correspondence principle. The associated Schrödinger equation has no extra curvature nor torsion terms that have plagued earlier attempts. Several well-known physical systems are invoked to suggest the correctness of the proposed theory.


Sign in / Sign up

Export Citation Format

Share Document