Density of states near the fluctuation boundary of the spectrum of one-dimensional incommensurable structures

1985 ◽  
Vol 62 (2) ◽  
pp. 213-215 ◽  
Author(s):  
S. A. Gredeskul ◽  
L. A. Pastur
2014 ◽  
Vol 215 ◽  
pp. 385-388
Author(s):  
Valter A. Ignatchenko ◽  
Denis S. Tsikalov

Effects of both the phase and the amplitude inhomogeneities of different dimensionalities on the Greens function and on the one-dimensional density of states of spin waves in the sinusoidal superlattice have been studied. Processes of multiple scattering of waves from inhomogeneities have been taken into account in the self-consistent approximation.


1986 ◽  
Vol 56 (5) ◽  
pp. 532-535 ◽  
Author(s):  
Alice E. White ◽  
R. C. Dynes ◽  
J. P. Garno

2019 ◽  
Vol 27 (4) ◽  
pp. 253-259
Author(s):  
Hayk Asatryan ◽  
Werner Kirsch

Abstract We consider one-dimensional random Schrödinger operators with a background potential, arising in the inverse scattering problem. We study the influence of the background potential on the essential spectrum of the random Schrödinger operator and obtain Anderson localization for a larger class of one-dimensional Schrödinger operators. Further, we prove the existence of the integrated density of states and give a formula for it.


Crystals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 576 ◽  
Author(s):  
Ruei-Fu Jao ◽  
Ming-Chieh Lin

Light propagation in one-dimensional (1D) photonic crystals (PCs) enclosed in a rectangular waveguide is investigated in order to achieve a complete photonic band gap (PBG) while avoiding the difficulty in fabricating 3D PCs. This work complements our two previous articles (Phys. Rev. E) that quantitatively analyzed omnidirectional light propagation in 1D and 2D PCs, respectively, both showing that a complete PBG cannot exist if an evanescent wave propagation is involved. Here, we present a quantitative analysis of the transmission functions, the band structures, and the photon density of states (PDOS) for both the transverse electric (TE) and transverse magnetic (TM) polarization modes of the periodic multilayer heterostructure confined in a rectangular waveguide. The PDOS of the quasi-1D photonic crystal for both the TE and TM modes are obtained, respectively. It is demonstrated that a “complete PBG” can be obtained for some frequency ranges and categorized into three types: (1) below the cutoff frequency of the fundamental TE mode, (2) within the PBG of the fundamental TE mode but below the cutoff frequency of the next higher order mode, and (3) within an overlap of the PBGs of either TE modes, TM modes, or both. These results are of general importance and relevance to the dipole radiation or spontaneous emission by an atom in quasi-1D periodic structures and may have applications in future photonic quantum technologies.


Sign in / Sign up

Export Citation Format

Share Document