Absence of continuous symmetry breaking in two-dimensional models of statistical physics

1977 ◽  
Vol 33 (1) ◽  
pp. 897-902 ◽  
Author(s):  
S. B. Shlosman



1983 ◽  
Vol 218 (1) ◽  
pp. 191-204
Author(s):  
A. D'Adda ◽  
A.C. Davis ◽  
P. Di Vecchia




2018 ◽  
pp. 14-18
Author(s):  
V. V. Artyushenko ◽  
A. V. Nikulin

To simulate echoes from the earth’s surface in the low flight mode, it is necessary to reproduce reliably the delayed reflected sounding signal of the radar in real time. For this, it is necessary to be able to calculate accurately and quickly the dependence of the distance to the object being measured from the angular position of the line of sight of the radar station. Obviously, the simplest expressions for calculating the range can be obtained for a segment or a plane. In the text of the article, analytical expressions for the calculation of range for two-dimensional and three-dimensional cases are obtained. Methods of statistical physics, vector algebra, and the theory of the radar of extended objects were used. Since the calculation of the dependence of the range of the object to the target from the angular position of the line of sight is carried out on the analytical expressions found in the paper, the result obtained is accurate, and due to the relative simplicity of the expressions obtained, the calculation does not require much time.





2013 ◽  
Vol 45 (3) ◽  
pp. 1871-1885 ◽  
Author(s):  
C. Bardos ◽  
M. C. Lopes Filho ◽  
Dongjuan Niu ◽  
H. J. Nussenzveig Lopes ◽  
E. S. Titi


2008 ◽  
Vol 62 (1) ◽  
Author(s):  
Peter C. Chu

The Navy’s mine impact burial prediction model creates a time history of a cylindrical or a noncylindrical mine as it falls through air, water, and sediment. The output of the model is the predicted mine trajectory in air and water columns, burial depth/orientation in sediment, as well as height, area, and volume protruding. Model inputs consist of parameters of environment, mine characteristics, and initial release. This paper reviews near three decades’ effort on model development from one to three dimensions: (1) one-dimensional models predict the vertical position of the mine’s center of mass (COM) with the assumption of constant falling angle, (2) two-dimensional models predict the COM position in the (x,z) plane and the rotation around the y-axis, and (3) three-dimensional models predict the COM position in the (x,y,z) space and the rotation around the x-, y-, and z-axes. These models are verified using the data collected from mine impact burial experiments. The one-dimensional model only solves one momentum equation (in the z-direction). It cannot predict the mine trajectory and burial depth well. The two-dimensional model restricts the mine motion in the (x,z) plane (which requires motionless for the environmental fluids) and uses incorrect drag coefficients and inaccurate sediment dynamics. The prediction errors are large in the mine trajectory and burial depth prediction (six to ten times larger than the observed depth in sand bottom of the Monterey Bay). The three-dimensional model predicts the trajectory and burial depth relatively well for cylindrical, near-cylindrical mines, and operational mines such as Manta and Rockan mines.



1983 ◽  
Vol 131 (4-6) ◽  
pp. 385-389 ◽  
Author(s):  
George Thompson


1973 ◽  
Vol 7 (8) ◽  
pp. 2309-2310
Author(s):  
Joseph Klarfeld ◽  
Alexander L. Harvey


Sign in / Sign up

Export Citation Format

Share Document