kinetic instability
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 14)

H-INDEX

15
(FIVE YEARS 1)

2022 ◽  
Vol 924 (1) ◽  
pp. 8
Author(s):  
C. M. Espinoza ◽  
P. S. Moya ◽  
M. Stepanova ◽  
J. A. Valdivia ◽  
R. E. Navarro

Abstract Among the fundamental and most challenging problems of laboratory, space, and astrophysical plasma physics is to understand the relaxation processes of nearly collisionless plasmas toward quasi-stationary states and the resultant states of electromagnetic plasma turbulence. Recently, it has been argued that solar wind plasma β and temperature anisotropy observations may be regulated by kinetic instabilities such as the ion cyclotron, mirror, electron cyclotron, and firehose instabilities; and it has been argued that magnetic fluctuation observations are consistent with the predictions of the fluctuation–dissipation theorem, even far below the kinetic instability thresholds. Here, using in situ magnetic field and plasma measurements by the THEMIS satellite mission, we show that such regulation seems to occur also in the Earth’s magnetotail plasma sheet at the ion and electron scales. Regardless of the clear differences between the solar wind and the magnetotail environments, our results indicate that spontaneous fluctuations and their collisionless regulation are fundamental features of space and astrophysical plasmas, thereby suggesting the processes is universal.


2022 ◽  
Vol 29 (1) ◽  
pp. 013501
Author(s):  
V. Toivanen ◽  
B. S. Bhaskar ◽  
H. Koivisto ◽  
L. Maunoury ◽  
O. Tarvainen ◽  
...  

2021 ◽  
Vol 5 (4) ◽  
Author(s):  
Mathias Homann ◽  
Bernhard von Boehn ◽  
Mauricio Prieto ◽  
Daniel M. Gottlob ◽  
Liviu C. Tănase ◽  
...  

2021 ◽  
Vol 70 ◽  
pp. 196-202
Author(s):  
S. Bukhari ◽  
Syed Raza Ali Raza ◽  
S. Ali

2020 ◽  
Vol 500 (4) ◽  
pp. 4530-4548
Author(s):  
D B Melrose ◽  
M Z Rafat ◽  
A Mastrano

ABSTRACT We consider critically the three most widely favoured pulsar radio emission mechanisms: coherent curvature emission (CCE), beam-driven relativistic plasma emission (RPE), and anomalous Doppler emission (ADE). We assume that the pulsar plasma is 1D, streaming outwards with a bulk Lorentz factor γs ≫ 〈γ〉 − 1 ≳ 1, where 〈γ〉 is the intrinsic spread in the rest frame of the plasma. We argue that the formation of beams in a multicloud model is ineffective in the intrinsically relativistic case for plausible parameters because the overtaking takes too long. We argue that the default choice for the particle distribution in the rest frame is a Jüttner distribution and that relativistic streaming should be included by applying a Lorentz transformation to the rest-frame distribution, rather than the widely assumed relativistically streaming Gaussian distribution. We find that beam-driven wave growth is severely restricted by (a) the wave properties in pulsar plasma, (b) a separation condition between beam and background, and (c) the inhomogeneity of the plasma in the pulsar frame. The growth rate for the kinetic instability is much smaller and the bandwidth of the growing waves is much larger for a Jüttner distribution than for a relativistically streaming Gaussian distribution. No reactive instability occurs at all for a Jüttner distribution. We conclude that none of CCE, RPE, and ADE is tenable as the generic pulsar radio emission mechanism for ‘plausible’ assumptions about the pulsar plasma.


2020 ◽  
Author(s):  
Jinsong Zhao ◽  
Heyu Sun ◽  
Wen Liu ◽  
Huasheng Xie ◽  
Dejin Wu

<p>Electron temperature anisotropy instabilities are believed to constrain the distributions of the electron parallel and perpendicular temperatures in the solar wind. When the electron perpendicular temperature is larger than the parallel temperature, the whistler instability is normally stronger than the electron mirror instability. While the electron parallel temperature is larger than the perpendicular temperature, the electron oblique firehose instability dominates the parallel firehose instability. Therefore, previous studies proposed the whistler and electron oblique firehose instabilities constraint on the electron dynamics in the solar wind. Based on the fact that there always exists the differential drift velocity among different electron populations, we consider the electron kinetic instability in the plasmas containing the electron anisotropic component and the electron beam component. Consequently, we give a comprehensive electron kinetic instability analysis in the solar wind. Furthermore, we propose that the electron acoustic/magneto-acoustic instability can arise in the low electron beta regime, and the whistler electron beam instability can be triggered in a wide beta regime. These two instabilities can provide a constraint on the electron beam velocity. Moreover, we find a new instability in the regime of the electron beta ~ 1, and this instability produces obliquely-propagating fast-magnetosonic/whistler waves. These results would be helpful for distinguishing the electron instability and for analyzing the constraint mechanism on the electron temperature distribution in the solar wind.</p>


2020 ◽  
Vol 22 (33) ◽  
pp. 18646-18654
Author(s):  
Subhasish Mallick ◽  
Amit Kumar ◽  
Pradeep Kumar

In the present work, we have studied the effect of ammonia and formic acid on the kinetic stability of sulfurous acid using high level ab initio calculations.


2019 ◽  
Author(s):  
Christopher M. Poteat ◽  
Yujin Jang ◽  
Myunggi Jung ◽  
John D. Johnson ◽  
Rachel G. Williams ◽  
...  

Cyclopropanone derivatives have long been considered unsustainable synthetic intermediates due to their extreme strain and kinetic instability. Herein, we report the enantioselective synthesis of 1-sulfonylcyclopropanols as stable yet powerful equivalents of the corresponding cyclopropanone derivatives, via α-hydroxylation of sulfonylcyclopropanes using a bis(silyl) peroxide as electrophilic oxygen source. Both the electronic and steric nature of the sulfonyl moiety, which serves as a base-labile protecting group and confers crystallinity to these cyclopropanone precursors, were found to have a crucial impact on the rate of equilibration to the corresponding cyclopropanone, highlighting the modular nature of these precursors and the potential for their widespread adoption as synthetic intermediates. The utility of these cyclopropanone surrogates is demonstrated in a mild and stereospecific formal [3+1] cycloaddition with simple hydroxylamines acting here as nitrene equivalents, leading to the efficient formation of chiral β-lactam derivatives.


Sign in / Sign up

Export Citation Format

Share Document